Spectrum sensing and direction of arrival (DOA) estimation have been thoroughly investigated, both separately and as a joint task. Estimating the support of a set of signals and their DOAs is crucial to many signal processing applications, such as Cognitive Radio (CR). A challenging scenario, faced by CRs, is that of multiband signals, composed of several narrowband transmissions spread over a wide spectrum each with unknown carrier frequencies and DOAs. The Nyquist rate of such signals is high and constitutes a bottleneck both in the analog and digital domains. To alleviate the sampling rate issue, several sub-Nyquist sampling methods, such as multicoset sampling or the modulated wideband converter (MWC), have been proposed in the context of spectrum sensing. In this work, we first suggest an alternative sub-Nyquist sampling and signal reconstruction method to the MWC, based on a uniform linear array (ULA). We then extend our approach to joint spectrum sensing and DOA estimation and propose the CompreSsed CArrier and DOA Estimation (CaSCADE) system, composed of an L-shaped array with two ULAs. In both cases, we derive perfect recovery conditions of the signal parameters (carrier frequencies and DOAs if relevant) and the signal itself and provide two reconstruction algorithms, one based on the ESPRIT method and the second on compressed sensing techniques. Both our joint carriers and DOAs recovery algorithms overcome the well-known pairing issue between the two parameters. Simulations demonstrate that our alternative spectrum sensing system outperforms the MWC in terms of recovery error and design complexity and show joint carrier frequencies and DOAs from our CaSCADE system's sub-Nyquist samples.


翻译:测算一组信号及其DAA的支持对于许多信号处理应用程序,如Cognitive Radio(CR)至关重要。CRS面临的一个具有挑战性的情景是多波段信号,由若干波段传输组成,每个波段分布宽广,承运人频率和 DoAs不为人知的多个窄带传输组成。这种信号的Nyquist率很高,在模拟和数字领域的轨迹参数中构成瓶颈。为缓解取样率问题,在频谱感测方面,提出了若干次Nyst取样方法,如多coset取样或调制宽频转换器(MWC)。在这项工作中,我们首先根据统一的线性阵列(ULA)向MWC提出另一种次波段采样和信号重建方法。我们随后将我们的回收方法扩大到联合频谱感测和DOA的准确度运算,并提议Simer和DA Estation(CAS)的第二代样采样取样方法,其中含有双轨的DOA 和信号系统,同时展示了我们的LA 和Servial Real 系统。

1
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员