Predicting the outcome of a process requires modeling the system dynamic and observing the states. In the context of social behaviors, sentiments characterize the states of the system. Affect Control Theory (ACT) uses sentiments to manifest potential interaction. ACT is a generative theory of culture and behavior based on a three-dimensional sentiment lexicon. Traditionally, the sentiments are quantified using survey data which is fed into a regression model to explain social behavior. The lexicons used in the survey are limited due to prohibitive cost. This paper uses a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model to develop a replacement for these surveys. This model achieves state-of-the-art accuracy in estimating affective meanings, expanding the affective lexicon, and allowing more behaviors to be explained.
翻译:预测过程的结果需要模拟系统动态并观察状态。 在社会行为方面,情感是系统状态的特点。 效果控制理论(ACT)使用情感来显示潜在互动。 ACT是一种基于三维感知词汇的文化和行为的遗传理论。 传统上,这种情绪是用调查数据量化的,这些数据被输入回归模型来解释社会行为。 调查中使用的词汇有限,因为费用高昂。 本文使用一个精细调整的变换者双向电解码表示模型来开发这些调查的替代品。 这个模型在估计感知含义、扩大感知词汇和允许解释更多行为方面达到了最先进的准确性。