We propose SampleDepth, a Convolutional Neural Network (CNN), that is suited for an adaptive LiDAR. Typically,LiDAR sampling strategy is pre-defined, constant and independent of the observed scene. Instead of letting a LiDAR sample the scene in this agnostic fashion, SampleDepth determines, adaptively, where it is best to sample the current frame.To do that, SampleDepth uses depth samples from previous time steps to predict a sampling mask for the current frame. Crucially, SampleDepth is trained to optimize the performance of a depth completion downstream task. SampleDepth is evaluated on two different depth completion networks and two LiDAR datasets, KITTI Depth Completion and the newly introduced synthetic dataset, SHIFT. We show that SampleDepth is effective and suitable for different depth completion downstream tasks.
翻译:我们提出了SampleDepth,一种适用于自适应LiDAR的卷积神经网络(CNN)。通常,LiDAR采样策略是预定义的、恒定的,并且与观察到的场景无关。与让LiDAR以这种无知的方式采样场景不同,SampleDepth决定在当前帧中最好采样的位置。为了做到这一点,SampleDepth使用来自先前时间步骤的深度样本,以预测当前帧的采样掩码。关键是SampleDepth被训练以优化深度完成下游任务的性能。SampleDepth在两个不同的深度完成网络和两个LiDAR数据集,KITTI深度完成和新引入的合成数据集SHIFT上进行评估。我们展示了SampleDep