项目名称: 基于多尺度分解多源遥感图像的融合技术研究

项目编号: No.61307002

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 张宣妮

作者单位: 咸阳师范学院

项目金额: 23万元

中文摘要: 针对多源遥感图像多角度、多波段、多尺度、多时相等特征,建立多时-空-谱图像序列的一体化融合理论模型与方法。通过对配准参数和离群点位置进行联合迭代求解,初始配准参数对多源图像数据进行离群点检测,实现配准参数和离群点同步优化;利用最大似然方法对离群点的模型参数进行拟合,求解模型的标准偏差和离群点分布比例参数,构造图像配准的目标函数,实现高精度配准;研究基于多尺度分解的图像融合方法中的低频和高频分量的融合方法,描述观测图像与融合图像之间对应的数学关系;在贝叶斯最大后验概率准则下,经过理论推导建立一体化图像融合理论框架,并构建图像的空间和光谱函数模型,形成稳健的一体化图像融合模型。在构建光谱约束模型及顾及区域特征的保边缘图像空间约束模型条件下,同时实现空间信息的高融入与光谱信息的高保真,最终得到一种数据驱动且简单有效的融合方法。

中文关键词: 多尺度分解;小波变换;成分替换法;面向对象分析;图像融合

英文摘要: Considering the characteristics of multi-source remote sensing image that are multiple perspectives, multiband, multi-scale and multi-period, a multi-period - air - spectrum image sequence integration fusion theory model and method are established. Through the registration parameters, outliers position combined the iteration and the initial registration parameters on multi-source image data from the group of point detection, realize registration parameters and outliers synchronous optimization. Using maximum likelihood method to the model parameters of outliers and fitting model to solve the standard deviation and outliers distribution ratio parameters to structure image registration and realize high precision registration with the objective function. Research on image fusion method of low frequency and high frequency component based on multi-scale decomposition, and establish the corresponding mathematical relationship between the observed image and the fusion image. In the Bayesian maximum a posteriori probability criterion, derivate an integrated image fusion theory framework and constructs the image space and spectrum function model to form the integration of the formation of stable image fusion model.On the condition of constructing spectrum constraint model and taking account of regional characteristics o

英文关键词: Multi-scale decomposition;Wavelet transform;Component replacement;Object-oriented analysis;Image fusion

成为VIP会员查看完整内容
0

相关内容

基于深度学习的图像目标检测算法综述
专知会员服务
98+阅读 · 2022年4月15日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
29+阅读 · 2021年6月4日
专知会员服务
72+阅读 · 2021年3月23日
基于深度学习的数据融合方法研究综述
专知会员服务
141+阅读 · 2020年12月10日
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
读者来稿 | 有效遮挡检测的鲁棒人脸识别
计算机视觉战队
19+阅读 · 2019年3月28日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2021年6月30日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
12+阅读 · 2018年1月28日
小贴士
相关VIP内容
基于深度学习的图像目标检测算法综述
专知会员服务
98+阅读 · 2022年4月15日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
29+阅读 · 2021年6月4日
专知会员服务
72+阅读 · 2021年3月23日
基于深度学习的数据融合方法研究综述
专知会员服务
141+阅读 · 2020年12月10日
相关资讯
基于深度学习的图像目标检测算法综述
专知
2+阅读 · 2022年4月16日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
图像分割的U-Net系列方法
极市平台
56+阅读 · 2019年10月21日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
读者来稿 | 有效遮挡检测的鲁棒人脸识别
计算机视觉战队
19+阅读 · 2019年3月28日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员