Monitoring the conditions of machines is vital in the manufacturing industry. Early detection of faulty components in machines for stopping and repairing the failed components can minimize the downtime of the machine. This article presents an approach to detect the failure occurring in drill machines based on drill sounds from Valmet AB. The drill dataset includes three classes: anomalous sounds, normal sounds, and irrelevant sounds, which are also labeled as ``Broken", ``Normal", and ``Other", respectively. Detecting drill failure effectively remains a challenge due to the following reasons. The waveform of drill sound is complex and short for detection. Additionally, in realistic soundscapes, there are sounds and noise in the context at the same time. Moreover, the balanced dataset is small to apply state-of-the-art deep learning techniques. To overcome these aforementioned difficulties, we augmented sounds to increase the number of sounds in the dataset. We then proposed a convolutional neural network (CNN) combined with a long short-term memory (LSTM) to extract features from log-Mel spectrograms and learn global high-level feature representation for the classification of three classes. A leaky rectified linear unit (Leaky ReLU) was utilized as the activation function for our proposed CNN instead of the rectified linear unit (ReLU). Moreover, we deployed an attention mechanism at the frame level after the LSTM layer to learn long-term global feature representations. As a result, the proposed method reached an overall accuracy of 92.35% for the drill failure detection system.


翻译:在制造业中,监测机器条件至关重要。早期发现机器中用于停止和修复故障部件的故障部件,可以最大限度地减少机器故障的时间。本文章介绍了一种方法,用以根据Valmet AB 的钻机声音检测钻机故障。钻机数据集包括三个类别:异常声音、正常声音和不相关的声音,这些声音被分别标为“Broken”、“Nomal”和“Offeral”。由于以下原因,探测钻机故障有效仍然是一个挑战。钻机声音的波形复杂,探测时间短。此外,在现实的声景中,也有声音和噪音。此外,平衡的数据集很小,无法应用最先进的深层次学习技术。为了克服上述困难,我们增加了声音,增加数据集中声音的数量。我们随后提议了一个革命神经网络,加上一个长期的记忆(LSTM),以提取日志-M光谱图的特征,并学习全球高度的特征特征,35 同时,平衡数据集,在三类的升级后,我们使用的Revil-L 结构,一个长期的校验系统,一个长期的分辨率结构,用于我们使用的Reval-L 的校正的校正。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Learning Memory-guided Normality for Anomaly Detection
Anomalous Instance Detection in Deep Learning: A Survey
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年10月15日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Learning Memory-guided Normality for Anomaly Detection
Anomalous Instance Detection in Deep Learning: A Survey
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年5月16日
Top
微信扫码咨询专知VIP会员