We address the problem of anomaly detection, that is, detecting anomalous events in a video sequence. Anomaly detection methods based on convolutional neural networks (CNNs) typically leverage proxy tasks, such as reconstructing input video frames, to learn models describing normality without seeing anomalous samples at training time, and quantify the extent of abnormalities using the reconstruction error at test time. The main drawbacks of these approaches are that they do not consider the diversity of normal patterns explicitly, and the powerful representation capacity of CNNs allows to reconstruct abnormal video frames. To address this problem, we present an unsupervised learning approach to anomaly detection that considers the diversity of normal patterns explicitly, while lessening the representation capacity of CNNs. To this end, we propose to use a memory module with a new update scheme where items in the memory record prototypical patterns of normal data. We also present novel feature compactness and separateness losses to train the memory, boosting the discriminative power of both memory items and deeply learned features from normal data. Experimental results on standard benchmarks demonstrate the effectiveness and efficiency of our approach, which outperforms the state of the art.
翻译:我们处理异常现象检测问题,即在视频序列中探测异常事件。基于进化神经网络(CNNs)的异常检测方法通常会利用代理任务,如重建输入视频框架,学习在培训时不看到异常样本的描述正常现象的模式,并用测试时的重建错误量化异常现象的程度。这些方法的主要缺点是,它们没有明确地考虑到正常模式的多样性,CNN的强大代表能力允许重建异常视频框架。为解决这一问题,我们提出了一种未受监督的异常检测学习方法,明确考虑正常模式的多样性,同时降低CNN的代表性能力。为此,我们提议使用记忆中的项目记录正常数据原型的新的更新方案,使用记忆模块,在记忆中记录正常数据的原型模式。我们还提出了新颖的缩缩和单独损失特征,以训练记忆,增强记忆项目和从正常数据中深入学习的特征的歧视性力量。关于标准基准的实验结果显示了我们方法的效力和效率,这些方法超过了艺术的状态。