We address the problem of anomaly detection, that is, detecting anomalous events in a video sequence. Anomaly detection methods based on convolutional neural networks (CNNs) typically leverage proxy tasks, such as reconstructing input video frames, to learn models describing normality without seeing anomalous samples at training time, and quantify the extent of abnormalities using the reconstruction error at test time. The main drawbacks of these approaches are that they do not consider the diversity of normal patterns explicitly, and the powerful representation capacity of CNNs allows to reconstruct abnormal video frames. To address this problem, we present an unsupervised learning approach to anomaly detection that considers the diversity of normal patterns explicitly, while lessening the representation capacity of CNNs. To this end, we propose to use a memory module with a new update scheme where items in the memory record prototypical patterns of normal data. We also present novel feature compactness and separateness losses to train the memory, boosting the discriminative power of both memory items and deeply learned features from normal data. Experimental results on standard benchmarks demonstrate the effectiveness and efficiency of our approach, which outperforms the state of the art.


翻译:我们处理异常现象检测问题,即在视频序列中探测异常事件。基于进化神经网络(CNNs)的异常检测方法通常会利用代理任务,如重建输入视频框架,学习在培训时不看到异常样本的描述正常现象的模式,并用测试时的重建错误量化异常现象的程度。这些方法的主要缺点是,它们没有明确地考虑到正常模式的多样性,CNN的强大代表能力允许重建异常视频框架。为解决这一问题,我们提出了一种未受监督的异常检测学习方法,明确考虑正常模式的多样性,同时降低CNN的代表性能力。为此,我们提议使用记忆中的项目记录正常数据原型的新的更新方案,使用记忆模块,在记忆中记录正常数据的原型模式。我们还提出了新颖的缩缩和单独损失特征,以训练记忆,增强记忆项目和从正常数据中深入学习的特征的歧视性力量。关于标准基准的实验结果显示了我们方法的效力和效率,这些方法超过了艺术的状态。

4
下载
关闭预览

相关内容

MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
99+阅读 · 2020年1月13日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员