Perceptual image restoration seeks for high-fidelity images that most likely degrade to given images. For better visual quality, previous work proposed to search for solutions within the natural image manifold, by exploiting the latent space of a generative model. However, the quality of generated images are only guaranteed when latent embedding lies close to the prior distribution. In this work, we propose to restrict the feasible region within the prior manifold. This is accomplished with a non-parametric metric for two distributions: the Maximum Mean Discrepancy (MMD). Moreover, we model the degradation process directly as a conditional distribution. We show that our model performs well in measuring the similarity between restored and degraded images. Instead of optimizing the long criticized pixel-wise distance over degraded images, we rely on such model to find visual pleasing images with high probability. Our simultaneous restoration and enhancement framework generalizes well to real-world complicated degradation types. The experimental results on perceptual quality and no-reference image quality assessment (NR-IQA) demonstrate the superior performance of our method.
翻译:感知图像恢复寻求最有可能降解为给定图像的高不洁图像。 为了提高视觉质量,先前曾提议通过利用基因模型的潜伏空间,在自然图像层中寻找解决方案。 然而,生成图像的质量只有在潜嵌入接近先前分布时才会得到保证。 在这项工作中,我们提议限制在前一个图层中可行的区域。这是用两种分布的非参数度量来完成的:最大平均值差异(MMD)。此外,我们直接将降解过程作为有条件分布进行模拟。我们显示,我们的模型在测量恢复图像和退化图像之间的相似性方面表现良好。我们不是优化被批评的长的像素与退化图像之间的距离,而是依靠这种模型来找到高概率的可视化图像。我们同时进行的恢复和增强框架非常接近于真实世界复杂的降解类型。关于概念质量和不参照图像质量评估的实验结果显示了我们方法的优异性表现。