In computed tomography, the reconstruction is typically obtained on a voxel grid. In this work, however, we propose a mesh-based reconstruction method. For tomographic problems, 3D meshes have mostly been studied to simulate data acquisition, but not for reconstruction, for which a 3D mesh means the inverse process of estimating shapes from projections. In this paper, we propose a differentiable forward model for 3D meshes that bridge the gap between the forward model for 3D surfaces and optimization. We view the forward projection as a rendering process, and make it differentiable by extending recent work in differentiable rendering. We use the proposed forward model to reconstruct 3D shapes directly from projections. Experimental results for single-object problems show that the proposed method outperforms traditional voxel-based methods on noisy simulated data. We also apply the proposed method on electron tomography images of nanoparticles to demonstrate the applicability of the method on real data.
翻译:在计算成像学中, 重建通常在 voxel 网格上进行。 但是, 我们在此工程中提出一个基于网状的重建方法。 对于成像学问题, 3D meshes 大部分研究是为了模拟数据采集, 而不是重建, 3D 网格意味着从预测中估算形状的反向过程。 在本文中, 我们为 3D 网格提出了一个不同的前方模型, 以弥合3D 表面和优化的前方模型之间的差距。 我们把前方投影看成一个投影过程, 通过将最近的工作推广到不同的成像中来使其变得不同。 我们使用拟议的前方模型直接从预测中重建 3D 形状。 单点问题的实验结果显示, 拟议的方法在噪声模拟数据上优于传统的 voxel 方法。 我们还应用了纳米粒子电子摄影图像的拟议方法, 以证明该方法在真实数据上的适用性 。