Graph prediction problems prevail in data analysis and machine learning. The inverse prediction problem, namely to infer input data from given output labels, is of emerging interest in various applications. In this work, we develop \textit{invertible graph neural network} (iGNN), a deep generative model to tackle the inverse prediction problem on graphs by casting it as a conditional generative task. The proposed model consists of an invertible sub-network that maps one-to-one from data to an intermediate encoded feature, which allows forward prediction by a linear classification sub-network as well as efficient generation from output labels via a parametric mixture model. The invertibility of the encoding sub-network is ensured by a Wasserstein-2 regularization which allows free-form layers in the residual blocks. The model is scalable to large graphs by a factorized parametric mixture model of the encoded feature and is computationally scalable by using GNN layers. The existence of invertible flow mapping is backed by theories of optimal transport and diffusion process, and we prove the expressiveness of graph convolution layers to approximate the theoretical flows of graph data. The proposed iGNN model is experimentally examined on synthetic data, including the example on large graphs, and the empirical advantage is also demonstrated on real-application datasets of solar ramping event data and traffic flow anomaly detection.
翻译:数据分析和机器学习中普遍存在的图表预测问题。 逆向预测问题, 即从给定输出标签中推断输入数据, 是对各种应用的兴趣正在形成。 在这项工作中, 我们开发了\ textit{ 不可逆的图形神经网络} (iGNNN) (iGNN), 这是一种深层次的基因模型, 用来通过将图形作为有条件的基因化任务, 解决图中反向预测问题。 提议的模型包括一个不可逆的子网络, 将数据从数据一对一映射到中间编码的特性, 通过线性分类子网络进行前向预测, 并且通过一个准度混合模型从输出标签中高效生成输出。 我们通过瓦塞斯坦-2 的正规化, 来保证编码子网络不可逆性子网络的可忽略性, 使剩余区块中的自由形状层得以解决。 该模型可以通过一个参数化的参数性参数性混和混合混合模型, 通过使用GNN2层进行计算, 以最佳运输和扩散过程的理论理论支持, 并且我们证明图表的图解变变图图结构的清晰度的清晰度的清晰度, 也是在模拟数据中, 所展示的实验性数据中, 所展示的实验性数据 的模型的模型的模型的模型的精确性数据, 模拟的模型的模型的模型的精确性分析。