Anomaly detection in surveillance videos is a challenging task due to the diversity of anomalous video content and duration. In this paper, we consider video anomaly detection as a regression problem with respect to anomaly scores of video clips under weak supervision. Hence, we propose an anomaly detection framework, called Anomaly Regression Net (AR-Net), which only requires video-level labels in training stage. Further, to learn discriminative features for anomaly detection, we design a dynamic multiple-instance learning loss and a center loss for the proposed AR-Net. The former is used to enlarge the inter-class distance between anomalous and normal instances, while the latter is proposed to reduce the intra-class distance of normal instances. Comprehensive experiments are performed on a challenging benchmark: ShanghaiTech. Our method yields a new state-of-the-art result for video anomaly detection on ShanghaiTech dataset
翻译:由于异常视频内容和持续时间的多样性,监控视频中的异常探测是一项艰巨的任务,因为异常视频内容和持续时间的多样性。在本文中,我们认为视频异常探测是相对于监管薄弱的视频剪辑异常分数而言的回归问题。因此,我们提议了一个异常探测框架,称为异常回归网(AR-Net),仅在培训阶段需要视频级别标签。此外,为了了解异常检测的歧视性特征,我们设计了一个动态的多重访问学习损失和拟议的AR-Net的中心损失。前者用于扩大异常和正常案例之间的阶级间距离,而后者则用于减少正常案例的阶级间距离。 全面实验是在一个具有挑战性的基准上海科技(Tech)上海科技(Thech)上的全面实验。我们的方法产生了在上海科技数据集视频异常探测方面新的最新结果。