Aiming at the binary classification of functional data, we propose the continuum centroid classifier (CCC) built upon projections of functional data onto one specific direction. This direction is obtained via bridging the regression and classification. Controlling the extent of supervision, our technique is neither unsupervised nor fully supervised. Thanks to the intrinsic infinite dimension of functional data, one of two subtypes of CCC enjoys the (asymptotic) zero misclassification rate. Our proposal includes an effective algorithm that yields a consistent empirical counterpart of CCC. Simulation studies demonstrate the performance of CCC in different scenarios. Finally, we apply CCC to two real examples.
翻译:为了对功能数据进行二元分类,我们提议以功能数据的预测为基础,将连续的中子分类器(CCC)建在一个具体的方向上。这一方向是通过连接回归和分类获得的。控制监督的范围,我们的技术不是不受监督的,也不是完全监督的。由于功能数据的内在的无限层面,CCC的两个子类型之一享有(默认的)零分类率。我们的建议包括一种有效的算法,产生CCC的一致经验对应方。模拟研究表明CCC在不同情况下的表现。最后,我们对两个真实的例子适用CCC。