Despite increasing accessibility to function data, effective methods for flexibly estimating underlying trend structures are still scarce. We thereby develop locally adaptive smoothing methods for both functional time series and spatial data by extending trend filtering that is a powerful nonparametric trend estimation technique for scalar data. We formulate the functional version of trend filtering by introducing $L_2$-norm of the difference of adjacent trend functions. Using orthonormal basis expansion, we simplify the objective function to squared loss for coefficient vectors with grouped fused lasso penalty, and develop an efficient iteration algorithm for optimization. The tuning parameter in the proposed method is selected via cross validation. We also consider an extension of the proposed algorithm to spatial functional data. The proposed methods are demonstrated by simulation studies and an application to two real world datasets.


翻译:尽管功能数据越来越容易获得,但灵活估计基本趋势结构的有效方法仍然很少,因此,我们通过扩展趋势过滤技术,为功能时间序列和空间数据制定适应当地情况的平滑方法,这是对标度数据的强大非参数趋势估计技术;我们通过采用相邻趋势功能差异的低温,来制定趋势过滤功能的功能版本。我们使用异常基础扩展,简化目标功能,使带组合引信的拉索罚款的系数矢量发生平方位损失,并为优化开发高效的迭代算法。拟议方法的调控参数是通过交叉验证选定的。我们还考虑将拟议算法扩大到空间功能数据,模拟研究和对两个真实的世界数据集的应用证明了拟议方法。

0
下载
关闭预览

相关内容

已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
0+阅读 · 2021年5月27日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员