The health and safety hazards posed by worn crane lifting ropes mandate periodic inspection for damage. This task is time-consuming, prone to human error, halts operation, and may result in the premature disposal of ropes. Therefore, we propose using deep learning and computer vision methods to automate the process of detecting damaged ropes. Specifically, we present a novel vision-based system for detecting damage in synthetic fiber rope images using convolutional neural networks (CNN). We use a camera-based apparatus to photograph the lifting rope's surface, while in operation, and capture the progressive wear-and-tear as well as the more significant degradation in the rope's health state. Experts from Konecranes annotate the collected images in accordance with the rope's condition; normal or damaged. Then, we pre-process the images, design a CNN model in a systematic manner, evaluate its detection and prediction performance, analyze its computational complexity, and compare it with various other models. Experimental results show the proposed model outperforms other techniques with 96.4% accuracy, 95.8% precision, 97.2% recall, 96.5% F1-score, and 99.2% AUC. Besides, they demonstrate the model's real-time operation, low memory footprint, robustness to various environmental and operational conditions, and adequacy for deployment in industrial systems.
翻译:破旧吊起吊绳对健康和安全造成的危害要求定期检查损坏。 这项任务耗时费时, 容易发生人为错误, 停止操作, 可能导致过早处置绳索。 因此, 我们提议使用深层次的学习和计算机视觉方法, 自动发现受损绳索的过程。 具体地说, 我们提出了一个新型的基于视觉的系统, 利用卷轴神经网络来探测合成纤维绳索图像的损坏。 我们使用一个基于相机的仪器来拍摄吊绳表面, 同时在操作中, 捕捉绳索的逐渐磨损和严重退化。 Konecranes的专家根据绳索的状况, 笔记所收集的图像; 正常或损坏。 然后, 我们先处理图像, 系统设计CNN模型, 评估其检测和预测性, 分析其计算复杂性, 并与其他模型进行比较。 实验结果显示, 拟议的模型比其他技术要优于96.4% 精确度, 95.8% 精确度, 97.2% 回忆, F1- 2 和 低历史力的操作系统, 展示了99. 2 以及各种实际的工业定位系统。