In this work we study the topological properties of temporal hypergraphs. Hypergraphs provide a higher dimensional generalization of a graph that is capable of capturing multi-way connections. As such, they have become an integral part of network science. A common use of hypergraphs is to model events as hyperedges in which the event can involve many elements as nodes. This provides a more complete picture of the event, which is not limited by the standard dyadic connections of a graph. However, a common attribution to events is temporal information as an interval for when the event occurred. Consequently, a temporal hypergraph is born, which accurately captures both the temporal information of events and their multi-way connections. Common tools for studying these temporal hypergraphs typically capture changes in the underlying dynamics with summary statistics of snapshots sampled in a sliding window procedure. However, these tools do not characterize the evolution of hypergraph structure over time, nor do they provide insight on persistent components which are influential to the underlying system. To alleviate this need, we leverage zigzag persistence from the field of Topological Data Analysis (TDA) to study the change in topological structure of time-evolving hypergraphs. We apply our pipeline to both a cyber security and social network dataset and show how the topological structure of their temporal hypergraphs change and can be used to understand the underlying dynamics.
翻译:在这项工作中,我们研究的是时间超强的地形特性。 测谎仪为能够捕捉多路连接的图表提供了更高维的概括性图。 因此, 它们已成为网络科学的一个组成部分。 测高仪的常用用途是模拟事件, 将事件模拟为高端数据, 其中该事件可以包括许多元素作为节点。 这为事件提供了一个更加完整的图象, 不受一个图的标准双轨连接的限制。 但是, 事件的共同归属是时间信息, 作为事件发生时的间隔。 因此, 产生了一个时间超标, 准确捕捉到事件的时间信息及其多路连接。 因此, 它们已成为网络科学科学的一个有机部分。 研究这些时间超标的常用工具通常能够捕捉基本动态的变化, 并用在滑动窗口程序中取样的快照进行简要统计。 然而, 这些工具并不能描述时间结构的演变, 也没有提供对基本系统有影响力的持久性组成部分的洞察力。 为了减轻这一需要, 我们利用从地形数据分析领域( TDA) 来精确地捕捉到事件的时间信息分析的持久性,, 来研究历史结构结构结构的变化, 以及我们使用的高级时空图 系统是如何应用了时间结构 。