Finding the closest separable state to a given target state is a notoriously difficult task, even more difficult than deciding whether a state is entangled or separable. To tackle this task, we parametrize separable states with a neural network and train it to minimize the distance to a given target state, with respect to a differentiable distance, such as the trace distance or Hilbert--Schmidt distance. By examining the output of the algorithm, we obtain an upper bound on the entanglement of the target state, and construct an approximation for its closest separable state. We benchmark the method on a variety of well-known classes of bipartite states and find excellent agreement, even up to local dimension of $d=10$, while providing conjectures and analytic insight for isotropic and Werner states. Moreover, we show our method to be efficient in the multipartite case, considering different notions of separability. Examining three and four-party GHZ and W states we recover known bounds and obtain additional ones, for instance for triseparability.
翻译:找到与特定目标国最接近的可分离状态是一项臭名昭著的困难任务,甚至比确定一个国家是纠缠的还是分离的要困难得多。 为了完成这项任务,我们将具有神经网络的可分离状态与神经网络相匹配,并训练它以尽量减少与特定目标国的距离,如追踪距离或希尔伯特-施密特距离等不同距离。通过审查算法的输出,我们获得了目标国纠缠的上层界限,并为它最接近的可分离状态构建一个近似点。我们将该方法以已知的两边国家类别为基准,并找到极好的协议,甚至达到10美元的当地维度,同时为异形和韦纳州提供引言和分析见解。此外,我们还考虑到不同的分离性概念,我们展示了在多端情况下高效的方法。我们研究了三、四方GHZ和W都说,我们恢复了已知的界限并获得了更多的界限,例如三维分离性。