In this article we consider the development of an unbiased estimator for the ensemble Kalman--Bucy filter (EnKBF). The EnKBF is a continuous-time filtering methodology which can be viewed as a continuous-time analogue of the famous discrete-time ensemble Kalman filter. Our unbiased estimators will be motivated from recent work [Rhee \& Glynn 2010, [31]] which introduces randomization as a means to produce unbiased and finite variance estimators. The randomization enters through both the level of discretization, and through the number of samples at each level. Our estimator will be specific to linear and Gaussian settings, where we know that the EnKBF is consistent, in the particle limit $N \rightarrow \infty$, with the KBF. We highlight this for two particular variants of the EnKBF, i.e. the deterministic and vanilla variants, and demonstrate this on a linear Ornstein--Uhlenbeck process. We compare this with the EnKBF and the multilevel (MLEnKBF), for experiments with varying dimension size. We also provide a proof of the multilevel deterministic EnKBF, which provides a guideline for some of the unbiased methods.
翻译:在本文中,我们考虑开发一个无偏见的卡尔曼-布西过滤器(EnKBF)的公正估计器(EnKBF),EnKBF是一种连续时间过滤方法,可以被视为与著名的离散时间共体卡尔曼过滤器的连续时间模拟器。我们的无偏见估计器将从最近的作品[Rhee ⁇ Glynn 2010,[31]] 中得到动力,其中引入随机化作为产生不偏袒和有限的差异估计器的手段。随机化通过分解级别和每个级别样本的数量进行。我们的估计器将具体针对线性和高斯环境,我们知道EnKBFF是连续的,在粒子限值限制$\rightrowr\infty$(美元)和KFFFFM中,我们强调这是EKFFF的两种特定变体,即确定性和香草变体变体,并在线性Ornstein-Uhlenbeck进程中展示这一点。我们将此与EnKBFFFF和多级标准级的模型进行了某种程度的对比,我们也可以提供某种程度的测试。