Working with a two-stage ice sheet model, we explore how statistical data assimilation methods can be used to improve predictions of glacier melt and relatedly, sea level rise. We find that the EnKF improves model runs initialized using incorrect initial conditions or parameters, providing us with better models of future glacier melt. We explore the necessary number of observations needed to produce an accurate model run. Further, we determine that the deviations from the truth in output that stem from having few data points in the pre-satellite era can be corrected with modern observation data. Finally, using data derived from our improved model we calculate sea level rise and model storm surges to understand the affect caused by sea level rise.
翻译:我们与一个分为两个阶段的冰盖模型合作,探索如何利用统计数据同化方法来改进冰川融化和相关的海平面上升预测。我们发现EnKF改进模型使用不正确的初始条件或参数进行初始化,为我们提供了更好的未来冰川融化模型。我们探索了产生准确模型运行所需的必要观测数量。此外,我们确定,由于卫星前时代的数据点很少,因此产出的偏差可以用现代观测数据加以纠正。最后,我们利用从我们改进后的模型中得出的数据来计算海平面上升和风暴潮模型,以了解海平面上升造成的影响。