Generating natural language statements to convey information from tabular data (i.e., Table-to-text) is a process with one input and a variety of valid outputs. This characteristic underscores the abilities to control the generation and produce a diverse set of outputs as two key assets. Thus, we propose a diversity enhancing scheme that builds upon an inherent property of the statements, namely, their logic-types, by using a type-controlled Table-to-text generation model. Employing automatic and manual tests, we prove its twofold advantage: users can effectively tune the generated statement type, and, by sampling different types, can obtain a diverse set of statements for a given table.
翻译:从表格数据(即表格到文本)中生成自然语言的语句以传递信息是一个过程,有一个输入和各种有效产出,这一特征突出显示了控制生成和产生多种产出作为两个关键资产的能力,因此,我们提出一个多样性增强计划,该计划以报表的固有属性为基础,即逻辑类型,采用类型控制的表格到文本生成模式。我们采用自动和人工测试,证明它具有双重优势:用户可以有效地调和生成的语句类型,通过抽样不同类型,可以为某个表格获得一套不同的语句。