Conventional face super-resolution methods usually assume testing low-resolution (LR) images lie in the same domain as the training ones. Due to different lighting conditions and imaging hardware, domain gaps between training and testing images inevitably occur in many real-world scenarios. Neglecting those domain gaps would lead to inferior face super-resolution (FSR) performance. However, how to transfer a trained FSR model to a target domain efficiently and effectively has not been investigated. To tackle this problem, we develop a Domain-Aware Pyramid-based Face Super-Resolution network, named DAP-FSR network. Our DAP-FSR is the first attempt to super-resolve LR faces from a target domain by exploiting only a pair of high-resolution (HR) and LR exemplar in the target domain. To be specific, our DAP-FSR firstly employs its encoder to extract the multi-scale latent representations of the input LR face. Considering only one target domain example is available, we propose to augment the target domain data by mixing the latent representations of the target domain face and source domain ones, and then feed the mixed representations to the decoder of our DAP-FSR. The decoder will generate new face images resembling the target domain image style. The generated HR faces in turn are used to optimize our decoder to reduce the domain gap. By iteratively updating the latent representations and our decoder, our DAP-FSR will be adapted to the target domain, thus achieving authentic and high-quality upsampled HR faces. Extensive experiments on three newly constructed benchmarks validate the effectiveness and superior performance of our DAP-FSR compared to the state-of-the-art.


翻译:常规面部超分辨率方法通常假定测试低分辨率图像(LR)位于培训的同一领域。由于照明条件和成像硬件不同,在许多现实世界情景中,培训和测试图像之间的领域差距不可避免地会在许多现实情景中出现。忽略这些领域差距会导致低面超分辨率(FSR)性能。然而,如何将经过培训的FSR模型有效和高效地转移到目标领域,却没有对此进行调查。为了解决这一问题,我们开发了一个名为DAP-FSR网络的Dmain-Award Pyrammid Fyramme-Oi-Oi-Oi-Oi-Oi-Oi-Oi-Oi-Oi-Oi-FR,我们DAP-FR 首次试图从目标领域领域中超级解析,只利用高分辨率(HR)和LR Eximational ;具体地说,我们的DAP-FR首先使用其隐含的多尺度来提取输入输入输入LREF的多层次隐含的图像。考虑到仅有的一个目标领域范例,我们三个目标领域将面临调整的域数据。我们的目标域域内面面面面面面面面面面面图将更新为D-ROAP的直径域域域域域图,然后将用来更新。

0
下载
关闭预览

相关内容

【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
专知会员服务
60+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2020年7月16日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
5+阅读 · 2018年10月23日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员