The representation of consistent mixed reality (XR) environments requires adequate real and virtual illumination composition in real-time. Estimating the lighting of a real scenario is still a challenge. Due to the ill-posed nature of the problem, classical inverse-rendering techniques tackle the problem for simple lighting setups. However, those assumptions do not satisfy the current state-of-art in computer graphics and XR applications. While many recent works solve the problem using machine learning techniques to estimate the environment light and scene's materials, most of them are limited to geometry or previous knowledge. This paper presents a CNN-based model to estimate complex lighting for mixed reality environments with no previous information about the scene. We model the environment illumination using a set of spherical harmonics (SH) environment lighting, capable of efficiently represent area lighting. We propose a new CNN architecture that inputs an RGB image and recognizes, in real-time, the environment lighting. Unlike previous CNN-based lighting estimation methods, we propose using a highly optimized deep neural network architecture, with a reduced number of parameters, that can learn high complex lighting scenarios from real-world high-dynamic-range (HDR) environment images. We show in the experiments that the CNN architecture can predict the environment lighting with an average mean squared error (MSE) of \num{7.85e-04} when comparing SH lighting coefficients. We validate our model in a variety of mixed reality scenarios. Furthermore, we present qualitative results comparing relights of real-world scenes.
翻译:持续混杂的现实环境( XR) 的表述方式, 要求以实时方式以适当的真实和虚拟的光化构成 。 估计真实情景的灯光仍然是一项挑战。 由于问题的性质不正确, 典型反向技术解决简单的照明设置问题。 然而, 这些假设不能满足计算机图形和 XR 应用程序中当前最先进的计算机图形和XR 应用程序。 虽然许多近期工程都用机器学习技术来估计环境光和场景材料解决问题, 其中大部分都局限于地貌或先前的知识。 本文展示了一个基于CNN的模型, 用来估计混合现实环境的复杂照明,而以前没有关于场景的信息。 我们用一套球形协调环境照明(SH) 模拟环境照明, 能够有效地代表地区照明。 我们提出了一个新的CNN架构, 输入 RGB 图像, 并在实时中承认环境照明。 与以前基于CNN 的灯光量估算方法不同, 我们提议使用一种高度优化的深层网络结构, 并且减少参数数量, 能够从真实的RISMS- RIS 平流环境的平流图像中学习高复杂且的模拟的模拟环境对比。