The Cube versus Cube test is a variant of the well-known Plane versus Plane test of Raz and Safra, in which to each $3$-dimensional affine subspace $C$ of $\mathbb{F}_q^n$, a polynomial of degree at most $d$, $T(C)$, is assigned in a somewhat locally consistent manner: taking two cubes $C_1, C_2$ that intersect in a plane uniformly at random, the probability that $T(C_1)$ and $T(C_2)$ agree on $C_1\cap C_2$ is at least some $\epsilon$. An element of interest is the soundness threshold of this test, i.e. the smallest value of $\epsilon$, such that this amount of local consistency implies a global structure; namely, that there is a global degree $d$ function $g$ such that $g|_{C} \equiv T(C)$ for at least $\Omega(\epsilon)$ fraction of the cubes. We show that the cube versus cube low degree test has soundness ${\sf poly}(d)/q$. This result achieves the optimal dependence on $q$ for soundness in low degree testing and improves upon previous soundness results of ${\sf poly}(d)/q^{1/2}$ due to Bhangale, Dinur and Navon.
翻译:立方体对立方体的测试是众所周知的拉兹和萨夫的平板对平板测试的一种变体,其中,对于每3美元的方形CFSF 美元C$$\mathbb{F ⁇ q ⁇ n$,一个以美元计价的多元度值最高为美元,即$T(C)$,以某种地方一致的方式分配:用两个立方体$C_1,C_2美元,在平面上任意交叉,美元(C_1)1美元和美元T(C_2)美元对美元C_1\ccap C_2美元至少为美元。利息的一个要素是这一测试的音亮度阈值,即美元等于美元(T)(C)美元,因此,当地一致性的最小值意味着一个全球结构;也就是说,一个全球水平的美元函数,即美元=C}美元=equiv T(C)美元,至少是美元(Omega(C)C_C_2美元对美元,美元,美元是某种C_2美元。