This manuscript presents an efficient solver for the linear system that arises from the Hierarchical Poincar\'e-Steklov (HPS) discretization of three dimensional variable coefficient Helmholtz problems. Previous work on the HPS method has tied it with a direct solver. This work is the first efficient iterative solver for the linear system that results from the HPS discretization. The solution technique utilizes GMRES coupled with a locally homogenized block-Jacobi preconditioner. The local nature of the discretization and preconditioner naturally yield the matrix-free application of the linear system. Numerical results illustrate the performance of the solution technique. This includes an experiment where a problem approximately 100 wavelengths in each direction that requires more than a billion unknowns to achieve approximately 4 digits of accuracy takes less than 20 minutes to solve.
翻译:本手稿为线性系统提供了一个高效的解答器,该解答器来自三个维可变系数Helmholtz问题的分解系统(HPS) 。 HPS 方法的以往工作已经与直接解答器绑在一起。 这是由 HPS 分解产生的线性系统的第一个高效的迭代解答器。 解决方案技术使用GMRES, 加上一个本地均匀的区块- Jacobi 预设器。 离散和先决条件器的本地性质自然生成线性系统的无矩阵应用。 数字结果显示了解答技术的性能。 这包括一个实验, 在每个方向上大约100波长的问题需要超过10亿个未知数才能达到大约4位精确度, 需要不到20分钟才能解决。