Let $A(n, d)$ denote the maximum size of a binary code of length $n$ and minimum Hamming distance $d$. In this paper, we explore new lower and upper bounds on $A(n, d)$ in the large-minimum distance regime, in particular, when $d = n/2 - \Omega(\sqrt{n})$. We first provide a lower bound by demonstrating a carefully designed construction of cyclic codes of length $n= 2^m -1$ showing that $A(n, d= n/2 - 2^{c-1}\sqrt{n}) \geq n^{c+1/2}$, for any integer $c$ with $1 \leq c \leq m/2 - 1$. Using a similar code construction technique a sequence of improved lower bounds are shown in a narrower range of the minimum distance $d$, in particular, when $d = n/2 - \Omega(n^{2/3})$. Furthermore, by leveraging a Fourier-analytic view of Delsarte's linear program, upper bounds on $A(n, n/2 - \rho\sqrt{n})$ with $\rho\in (0.5, 9.5)$ are obtained that scale polynomially in $n$. We provide numerical results to demonstrate that these are the tightest upper bounds, to the best of our knowledge, in the specified regime compared with previously known bounds in the literature.
翻译:LetsA(n), d(d)美元表示长度为美元和最小含汞距离的二进制代码的最大尺寸。在本文中,我们探索在大最小距离系统中对$A(n, d)的新的下限和上限,特别是当$d=n/2 -\\\Omega(sqrt{n})美元时。我们首先通过展示精心设计的长度为$=2cm-1美元的周期代码的构建而提供较低的约束值,显示美元(n, d= n/2, 2 ⁇ c-1 ⁇ sqrt{n} (geqq) nc+1/2}$(美元,dd=n, c-1c-1, d) 和美元(n) $(n) 和美元(leq) 美元(leqc) /leqm/2-1美元。使用类似的代码构建技术,更精细的下限序列显示在最小的距离范围内,特别是当美元=n/2-\(mega) 美元(n) 美元(n_2/3) 美元(n) 美元(n) leqr) listrical_(n) roisal) roisal) rois) roisals(x) lex) 中,在最接近的平级(x(d) rol) leg) roisc) legilent (d) legal) roisc) routisalisalisal s (d) pralisc) praliscaliscaliscal pral s (美元(d) pral) pral) praliscal 。