Image-based virtual try-on aims to synthesize an image of a person wearing a given clothing item. To solve the task, the existing methods warp the clothing item to fit the person's body and generate the segmentation map of the person wearing the item before fusing the item with the person. However, when the warping and the segmentation generation stages operate individually without information exchange, the misalignment between the warped clothes and the segmentation map occurs, which leads to the artifacts in the final image. The information disconnection also causes excessive warping near the clothing regions occluded by the body parts, so-called pixel-squeezing artifacts. To settle the issues, we propose a novel try-on condition generator as a unified module of the two stages (i.e., warping and segmentation generation stages). A newly proposed feature fusion block in the condition generator implements the information exchange, and the condition generator does not create any misalignment or pixel-squeezing artifacts. We also introduce discriminator rejection that filters out the incorrect segmentation map predictions and assures the performance of virtual try-on frameworks. Experiments on a high-resolution dataset demonstrate that our model successfully handles the misalignment and occlusion, and significantly outperforms the baselines. Code is available at https://github.com/sangyun884/HR-VITON.
翻译:以图像为基础的虚拟试镜旨在合成一个穿着特定衣物的人的图像。 为了解决问题, 现有方法将衣物项目扭曲为适合个人身体, 并生成在与个人对着该件之前穿戴该件的人的分解图。 但是, 当扭曲和分解生成阶段在没有信息交流的情况下单独运行时, 扭曲的衣服和分解图之间出现不匹配, 导致最终图像中的艺术品。 信息断开还导致在衣物区附近过度扭曲, 即所谓的像素- 挤压工艺品。 为了解决问题, 我们提议在两个阶段( 即, 扭曲和分解生成阶段) 之前, 将穿戴该件的人的分解生成器作为统一的模块。 新提议的状态生成器元集块可以实施信息交流, 且条件生成器不会在最终图像中产生任何不匹配或像素- queez 艺术。 我们还引入了歧视者拒绝将错误的分解图解出来, 所谓的像素- 结晶体图预测, 并且保证了我们虚拟试判基准框架的运行状态。