Online-to-offline (O2O) food delivery platforms have greatly expanded urban residents' access to a wide range of food options by allowing convenient ordering from distant food outlets. However, concerns persist regarding the nutritional quality of delivered food, particularly as the impact of O2O food delivery platforms on users' healthy food remains unclear. This study leverages large-scale empirical data from a leading O2O delivery platform to comprehensively analyze online food choice behaviors and how they are influenced by the online exposure to fast food restaurants, i.e., online food environment. Our analyses reveal significant variations in food preferences across demographic groups and city sizes, where male, low-income, and younger users are more likely to order fast food via O2O platforms. Besides, we also perform a comparative analysis on the food exposure differences in offline and online environments, confirming that the extended service ranges of O2O platforms can create larger "cyber food swamps". Furthermore, regression analysis highlights that a higher ratio of fast food orders is associated with "cyber food swamps", areas characterized by a higher proportion of accessible fast food restaurants. A 10% increase in this proportion raises the probability of ordering fast food by 22.0%. Moreover, a quasi-natural experiment substantiates the long-term causal effect of online food environment changes on healthy food choices. These findings underscore the need for O2O food delivery platforms to address the health implications of online food choice exposure, offering critical insights for stakeholders aiming to improve dietary health among urban populations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

O2O 即 Online To Offline,也即将线下商务的机会与互联网结合在了一起,让互联网成为线下交易的前台这样线下服务就可以使用线上营销。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员