Fast matrix multiplication is one of the most fundamental problems in algorithm research. The exponent of the optimal time complexity of matrix multiplication is usually denoted by $\omega$. This paper discusses new ideas for improving the laser method for fast matrix multiplication. We observe that the analysis of higher powers of the Coppersmith-Winograd tensor [Coppersmith & Winograd 1990] incurs a "combination loss", and we partially compensate it by using an asymmetric version of CW's hashing method. By analyzing the 8th power of the CW tensor, we give a new bound of $\omega<2.37188$, which improves the previous best bound of $\omega<2.37286$ [Alman & V.Williams 2020]. Our result breaks the lower bound of $2.3725$ in [Ambainis et al. 2014] because of the new method for analyzing component (constituent) tensors.
翻译:快速矩阵乘法是算法研究中最根本的问题之一。 矩阵乘法最佳时间复杂性的推论通常用 $\ omega$来表示。 本文讨论改进快速矩阵乘法激光法的新想法。 我们观察到, Coppersmith- Winograd Exor [Coppersmith & Winograd 1990] 的较高功率分析产生了“ 组合损失 ”, 我们通过使用一种对称的 CW 散射法来部分补偿它。 通过分析 CW Exmor 8 的功率, 我们给出一个新的约束值为$\ omega < 2.37188$, 改进了此前的 $\ omga<2.37286$ [Alman & V. Williams 2020] 的最佳约束值。 我们的结果打破了[ Ambainis 和 al. 2014] 中2.3725美元的较低功率, 是因为采用了新的分析元件( 组成) 推力法。