In two dimensions, we propose and analyze an a posteriori error estimator for the acoustic spectral problem based on the virtual element method in $\H(\div;\Omega)$. Introducing an auxiliary unknown, we use the fact that the primal formulation of the acoustic problem is equivalent to a mixed formulation, in order to prove a superconvergence result, necessary to despise high order terms. Under the virtual element approach, we prove that our local indicator is reliable and globally efficient in the $\L^2$-norm. We provide numerical results to assess the performance of the proposed error estimator.
翻译:在两个层面,我们提议和分析一个后置误差估计器,用于根据虚拟元素法对声频问题进行测算($\H(div;\div;\Omega)$.)。在引入一个未知的辅助元件时,我们使用一个事实,即声波问题的原始配方相当于一种混合配方,以证明一个超级趋同的结果,这是鄙视高阶条件所必需的。在虚拟元素方法下,我们证明我们的本地指标可靠,并且以$\L2$-norm为标准。我们提供数字结果,以评估拟议误判测标的性能。