The calculation of a three-dimensional underwater acoustic field has always been a key problem in computational ocean acoustics. Traditionally, this solution is usually obtained by directly solving the acoustic Helmholtz equation using a finite difference or finite element algorithm. Solving the three-dimensional Helmholtz equation directly is computationally expensive. For quasi-three-dimensional problems, the Helmholtz equation can be processed by the integral transformation approach, which can greatly reduce the computational cost. In this paper, a numerical algorithm for a quasi-three-dimensional sound field that combines an integral transformation technique, stepwise coupled modes and a spectral method is designed. The quasi-three-dimensional problem is transformed into a two-dimensional problem using an integral transformation strategy. A stepwise approximation is then used to discretize the range dependence of the two-dimensional problem; this approximation is essentially a physical discretization that further reduces the range-dependent two-dimensional problem to a one-dimensional problem. Finally, the Chebyshev--Tau spectral method is employed to accurately solve the one-dimensional problem. We provide the corresponding numerical program SPEC3D for the proposed algorithm and describe some representative numerical examples. In the numerical experiments, the consistency between SPEC3D and the analytical solution/high-precision finite difference program COACH verifies the reliability and capability of the proposed algorithm. A comparison of running times illustrates that the algorithm proposed in this paper is significantly faster than the full three-dimensional algorithm in terms of computational speed.
翻译:三维水下声学场的计算始终是计算海洋声学中的一个关键问题。 传统上, 这个解决方案通常是通过使用一个有限差异或有限元素算法直接解决声学 Helmholtz 方程式获得的。 直接解决三维Helmholtz 方程式是计算成本昂贵的。 对于准三维问题, Helmholtz 方程式可以通过综合转换方法处理, 这可以大大降低计算成本。 在本文中, 一个准三维声音场的数字算法, 结合一个整体转换技术、 步进式组合模式和光谱方法。 准三维问题通常通过使用一个整体变异战略直接解决。 直接解决三维方方方方方程式是二维的。 直接解决三维的三维方方方程式是分解二维问题; 对于准三维的方程式, 这种近方程式基本上是一个物理分解, 进一步将依赖范围的二维问题降为一维问题。 最后, Chebyshev- Tau 光谱系方法用于准确解决一维问题。 我们提供了一个完整的数字程序中对应的SPEC3级程序, 的全级计算分析模型, 和一定的计算方法的精确分析能力,, 的计算方法是用来在S- 的快速化的计算方法, 比较。 解释的精确度的计算, 的精确度的计算方法, 的精确度的精确度的精确度, 。