项目名称: 二氧化钛/量子点超薄膜/CsSnI3体异质结全无机高效固态太阳电池研究

项目编号: No.61474047

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 兰章

作者单位: 华侨大学

项目金额: 78万元

中文摘要: 针对量子点太阳电池光电转换过程激子解离效率低、电子空穴传输过程复合严重及传输速率不匹配导致载流子滞留引起二次复合等问题,本项目拟开展二氧化钛/量子点超薄膜/CsSnI3体异质结全无机高效固态太阳电池研究:①用二氧化钛纳米线/管阵列提高电子传输速率、扩散距离和抑制暗反应;用CsSnI3高速空穴传输材料提高空穴传输速率,消除载流子二次复合;②制备能级适宜的量子点超薄膜,构建二氧化钛/量子点超薄膜/CsSnI3间三维网络及同轴有序体异质结,促进激子解离,降低复合损耗;③无机材料具有较好的物理和化学性能及稳定性,能有效延长所构建电池的工作寿命,提高其长程稳定性。本项研究将揭示该结构电池在光子→激子→自由载流子转换及电荷收集过程的基本规律和调控机制,获得稳定高效的全无机量子点太阳电池,为同类电池的研发提供理论和技术支撑,研究结果在量子点光电器件、界面科学、电化学等领域也具有重要科学意义。

中文关键词: 太阳电池;量子点;激子解离;光生电子;空穴

英文摘要: In the core steps of light-to-electricity conversion processes in quantum dot solar cells,there exist three key problems hindering further improvement in power conversion efficiency. Firstly,the exciton dissociation efficiency in the cells is very low. Secondly,the electron-hole recombination in the cells is serious in charge transfer processes. Moreover,disparity between the electron and hole scavening rate in the cells leads to further accumulation of electrons or holes within the quantum dots and increases the rate of electron-hole recombination.In order to overcome these problems,the proposal will carry out the research on high-efficiency all-ionrganic solid-state solar cells based on TiO2/ultrathin quantum dot film/CsSnI3 bulk- heterojunction. The proposers come up with the following designs: ①TiO2 nanowire/nanotube arrays are used to improve electron transfer rate, diffusion length and suppress dark reaction; the CsSnI3 high-speed hole transport material is used to improve hole transport rate and eliminate secondary electron-hole recombination. ②Ultrathin quantum dot film with suitable energy band structure and TiO2/ultrathin quantum dot film/CsSnI3 based 3D network and coaxial bulk-heterojunctions are fabricated for improving exciton dissociation efficiency and decreasing recombination losses. ③ the utilized inorganic materials show good physical and chemical properties and stability, which can prolong the lifetime of the solar cells and increase their long-term stability . When the research project is finished, it is expected to reveal the basic rules and regulating mechanisms associated with the conversion processes from photons → excitons → free carriers and the charge collection processes, and successfully fabricate long-term stable and high-efficiency solar cells. The research results are useful for fabricating the same kind of solar cells by supplying the obtained theoretic and technical supports. They are also meaningful in the fields such as controllable assembly of quantum dot based optoelectronic devices, interface science, and electrochemistry science at the same time.

英文关键词: solar cell;quantum dot;exciton dissociation;photo-electron;hole

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
17+阅读 · 2021年12月22日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2020年9月14日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
50+阅读 · 2020年4月14日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
115+阅读 · 2020年1月1日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
18+阅读 · 2019年11月21日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
17+阅读 · 2021年12月22日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2020年9月14日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
50+阅读 · 2020年4月14日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
115+阅读 · 2020年1月1日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
18+阅读 · 2019年11月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员