Intraoperative shape reconstruction of organs from endoscopic camera images is a complex yet indispensable technique for image-guided surgery. To address the uncertainty in reconstructing entire shapes from single-viewpoint occluded images, we propose a framework for generative virtual learning of shape reconstruction using image translation with common latent variables between simulated and real images. As it is difficult to prepare sufficient amount of data to learn the relationship between endoscopic images and organ shapes, self-supervised virtual learning is performed using simulated images generated from statistical shape models. However, small differences between virtual and real images can degrade the estimation performance even if the simulated images are regarded as equivalent by humans. To address this issue, a Variational Autoencoder is used to convert real and simulated images into identical synthetic images. In this study, we targeted the shape reconstruction of collapsed lungs from thoracoscopic images and confirmed that virtual learning could improve the similarity between real and simulated images. Furthermore, shape reconstruction error could be improved by 16.9%.


翻译:从内窥镜相机图像对器官进行不合作的形状重建是一项复杂但不可或缺的图像制导外科手术技术。为了解决从单视点隐蔽图像中重建整个形状的不确定性,我们提出了一个框架,用于利用模拟图像与真实图像之间的共同潜伏变量转换图像,对形状重建进行基因化虚拟学习。由于难以编制足够的数据来了解内镜图像与器官形状之间的关系,因此使用从统计形状模型产生的模拟图像进行自我监督的虚拟学习。然而,虚拟图像与真实图像之间的微小差异可以降低估计性能,即使模拟图像被人类视为等效。为解决这一问题,将虚拟自动图解器用于将真实和模拟图像转换成相同的合成图像。在这项研究中,我们的目标是用硫镜图像来重建崩溃的肺的形状,并确认虚拟学习可以改善真实图像和模拟图像之间的相似性。此外,可将重建误差改善16.9 %。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
专知会员服务
89+阅读 · 2021年6月29日
专知会员服务
46+阅读 · 2020年10月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员