We study the problem of reconstructing 3D feature curves of an object from a set of calibrated multi-view images. To do so, we learn a neural implicit field representing the density distribution of 3D edges which we refer to as Neural Edge Field (NEF). Inspired by NeRF, NEF is optimized with a view-based rendering loss where a 2D edge map is rendered at a given view and is compared to the ground-truth edge map extracted from the image of that view. The rendering-based differentiable optimization of NEF fully exploits 2D edge detection, without needing a supervision of 3D edges, a 3D geometric operator or cross-view edge correspondence. Several technical designs are devised to ensure learning a range-limited and view-independent NEF for robust edge extraction. The final parametric 3D curves are extracted from NEF with an iterative optimization method. On our benchmark with synthetic data, we demonstrate that NEF outperforms existing state-of-the-art methods on all metrics. Project page: https://yunfan1202.github.io/NEF/.
翻译:我们从一组校准多视图图像中研究重建一个对象的 3D 特征曲线的问题。 为此,我们学习了一个神经隐性外观,代表3D 边缘的密度分布,我们称之为神经边缘(NEF ) 。受 NERF 的启发, NEF 优化为基于视觉的翻转损失,在特定视图上绘制了 2D 边缘地图,并与从该视图图像中提取的地面真象边缘地图进行比较。 NEF 的成像化优化完全利用 2D 边缘探测,而不需要3D 边缘、 3D 几何操作器或交叉视图边缘通信的监控。设计了若干技术设计,以确保为稳健边缘提取学习一个带宽度和视线独立的 NEF 。最后的3D 参数曲线是用迭接优化方法从 NEF 提取的。关于我们合成数据的基准,我们证明 NEF 超越了所有指标上的现有状态-艺术方法。项目页面: https:// yunfan1202.github. /NEF/ 。</s>