We present an Expectation-Maximization (EM) Regularized Deep Learning (EMReDL) model for weakly supervised tumor segmentation. The proposed framework is tailored to glioblastoma, a type of malignant tumor characterized by its diffuse infiltration into the surrounding brain tissue, which poses significant challenge to treatment target and tumor burden estimation using conventional structural MRI. Although physiological MRI provides more specific information regarding tumor infiltration, the relatively low resolution hinders a precise full annotation. This has motivated us to develop a weakly supervised deep learning solution that exploits the partial labelled tumor regions. EMReDL contains two components: a physiological prior prediction model and EM-regularized segmentation model. The physiological prior prediction model exploits the physiological MRI by training a classifier to generate a physiological prior map. This map is passed to the segmentation model for regularization using the EM algorithm. We evaluated the model on a glioblastoma dataset with the pre-operative multiparametric and recurrence MRI available. EMReDL showed to effectively segment the infiltrated tumor from the partially labelled region of potential infiltration. The segmented core tumor and infiltrated tumor demonstrated high consistency with the tumor burden labelled by experts. The performance comparisons showed that EMReDL achieved higher accuracy than published state-of-the-art models. On MR spectroscopy, the segmented region displayed more aggressive features than other partial labelled region. The proposed model can be generalized to other segmentation tasks that rely on partial labels, with the CNN architecture flexible in the framework.


翻译:我们提出了一个期望-最大化模型(EM) 常规化深层学习(EMReDL) 模型(EM) 模型(EMReDL) 模型,用于监管不力的肿瘤分解。拟议框架是专门针对Glioblastoma的,这是一种恶性肿瘤,其特点是向周围大脑组织扩散,对治疗目标和肿瘤负担估计构成重大挑战,使用常规结构MRI对治疗目标和肿瘤负担估算提出了重大挑战。虽然生理性MRI提供了有关肿瘤渗入的更具体的信息,但相对较低的分辨率妨碍了准确的完整说明。这促使我们开发了一种监管不力的深度深层次学习解决方案,利用部分标定的肿瘤区域。EMREDL包含两个组成部分:生理先前的预测模型和EM-正规化的分解模式。生理先前的预测模型利用了生理性 MRI,培训了一个分类者生成了生理前图。该图被传递到用于使用EM算算法进行正规化的分解模型,我们用预操作的多度和复现MRI来评估了该模型的模型。EMREDL显示,从部分被标定的潜在渗透区域与部分渗透的肿瘤分解的分解为潜在渗透的分解部分。在已公布的部分专家的分解的分流化的分解中,通过显示了分解式的分解式的分解结果显示了高缩式的分解结果。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
专知会员服务
60+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年7月15日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员