Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at https://github.com/MarSaKi/ETPNav.
翻译:视觉-语言导航是一项需要代理按照指令在环境中导航的任务。在物理模拟的机器人以及人工智能领域中,这项任务变得越来越关键,具有自主导航、搜索与救援、以及人机交互等多种潜在应用。本文提出了一种更为实用而具有挑战性的环境下的视觉-语言导航框架——连续环境下的视觉-语言导航(VLN-CE)。为了开发鲁棒性更强的VLN-CE代理,我们提出了一种新的导航框架,ETPNav,它专注于两个关键技能:1)抽象环境并生成长程导航计划的能力,以及2)在连续环境下进行避障控制的能力。ETPNav通过沿着已经走过的路径自组织预测的途经点,在线地拓扑地图环境,免去了对环境经验的先验知识。这使得代理将导航过程分解为高层规划和低层控制的任务。同时,ETPNav利用基于Transformer的跨模态计划器,根据拓扑地图和指令生成导航计划。计划然后通过避障控制器执行,该控制器利用试错启发式方法,在导航时防止代理被卡在障碍物中。实验结果证明了所提出方法的有效性。ETPNav相对于R2R-CE和RxR-CE数据集上的先前最先进方法均取得了10%以上和20%以上的性能改善。我们的代码可在https://github.com / MarSaKi / ETPNav找到。