7 Papers & Radios | SIGGRAPH 2022最佳博士论文;DeepMind AI西洋陆军棋中对人胜率84%

2022 年 7 月 10 日 机器之心
机器之心 & ArXiv Weekly Radiostation
参与:杜伟楚航、罗若天
本周重要论文包括 ACM SIGGRAPH 2022 最佳博士论文及五篇最佳论文。


目录:

  1. Acquiring Motor Skills Through Motion Imitation and Reinforcement Learning
  2. Image Features Influence Reaction Time: A Learned Probabilistic Perceptual Model for Saccade Latency 
  3. Translating Images into Maps 
  4. CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking 
  5. FedTree: A Fast, Effective, and Secure Tree-based Federated Learning System
  6. Quantum Tunneling Based Ultra-Compact and Energy Efficient Spiking Neuron Enables Hardware SNN
  7. Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
  8. ArXiv Weekly Radiostation:NLP、CV、ML 更多精选论文(附音频)

论文 1:Acquiring Motor Skills Through Motion Imitation and Reinforcement Learning

  • 作者:Xue Bin Peng
  • 论文地址:https://digitalassets.lib.berkeley.edu/techreports/ucb/incoming/EECS-2021-267.pdf

摘要: 作者提出了 动作模仿技术,使智能体能够通过模仿演示学习大量高度动态和运动行为 。智能体无需为每个感兴趣的技能设计控制器或奖励函数,只需接受预期技能所需要的一些运动示例片段即可。这样一来,作者提出的框架就可以合成一个紧密复刻目标行为的控制器。

在过程中,作者首先提出一个 动作模仿框架 ,使模拟智能体能够模仿参考动作片段中的复杂行为,包括步行和奔跑等常见的运动技能以及杂技和武术等更复杂的运动行为。智能体学习产生稳健和栩栩如生的行为,它们在外观上与现实中演员做出的动作几乎难以区分。

最后,作者又开发了相关模型,它们能够重复使用并组合从动作模仿中学得的技能,以解决具有挑战性的下游任务。除了为模拟智能体开发控制器外,作者的方法还可以为现实世界运行的机器人合成控制器。他通过为双足和四足机器人的各种敏捷运动技能开发控制器,证明了自己方法的有效性。


推荐: ACM SIGGRAPH 2022 最佳博士论文。

论文 2:Image Features Influence Reaction Time: A Learned Probabilistic Perceptual Model for Saccade Latency

  • 作者:Budmonde Duinkharjav 等
  • 论文地址:https://arxiv.org/pdf/2205.02437.pdf

摘要: 该研究提出了 一个受神经学启发的感知模型来预测人眼反应延迟期,作为在屏幕上被观察图像特征的函数 。该模型可以作为预测和改变电子竞技与 AR/VR 应用中反应延迟的指标。

(a)电竞目标搜索中的眼跳反应;(b)模型在目标候选者上的预测。

推荐: ACM SIGGRAPH 2022 最佳论文之一。

论文 3:Translating Images into Maps

  • 作者:Avishkar Saha 等
  • 论文地址:https://arxiv.org/pdf/2110.00966.pdf

摘要: 来自萨里大学的研究者 引入了注意力机制,将自动驾驶的 2D 图像转换为鸟瞰图,使得模型的识别准确率提升了 15% 。这项研究在不久前落幕的 ICRA 2022 会议上获得了 杰出论文奖

与以往的方法不同,这项研究将 BEV 的转换视为一个「Image-to-World」的转换问题,其目标是学习图像中的垂直扫描线和 BEV 中的极射线(polar ray)之间的对齐。在对齐模型上,研究者采用了 Transformer 这种基于注意力的序列预测结构。研究者将基于 Transformer 的对齐模型嵌入一个端到端学习公式中,该公式以单目图像及其固有矩阵为输入,然后预测静态和动态类的语义 BEV 映射。

模型架构。

推荐: ICRA 2022 杰出论文:把自动驾驶 2D 图像转成鸟瞰图,模型识别准确率立增 15%。

论文 4:CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking

  • 作者:Xuming Hu 等
  • 论文地址:https://arxiv.org/pdf/2206.11863.pdf

摘要: 本文介绍一个刚刚发表在 NAACL 上的中文的事实核查数据集 CHEF(受 HotpotQA 启发,是不是可以搞一个吃饭数据集宇宙 XD),论文作者来自清华,剑桥和 UIC 的 Philip Yu 组。据我们所知,这是 第一个基于证据的中文事实核查数据集

目前事实核查的数据集大致可以分为两类:人工的(Artificial)和天然的 (Natural)。

推荐: 第一个基于证据的中文事实核查数据集。

论文 5:FedTree: A Fast, Effective, and Secure Tree-based Federated Learning System

  • 作者:Qinbin Li 等
  • 论文地址:https://github.com/Xtra-Computing/FedTree/blob/main/FedTree_draft_paper.pdf

摘要: 近日,来自新加坡国立大学和清华大学的研究者提出了 一种专注于训练树模型的联邦学习新系统 FedTree 。FedTree 的架构共有 5 个模块: 接口、环境、框架、隐私保护以及模型

FedTree 系统架构图。

推荐: 专为决策树打造,新加坡国立大学 & 清华大学联合提出快速安全的联邦学习新系统。

论文 6:Quantum Tunneling Based Ultra-Compact and Energy Efficient Spiking Neuron Enables Hardware SNN

  • 作者:Ajay Kumar Singh 等
  • 论文地址:https://ieeexplore.ieee.org/document/9782075

摘要: 在最近的一项研究中,来自孟买理工学院的研究者实现了超低功耗人工神经元,允许 SNN 排列更紧凑。他们创造了一种 SNN,这种 SNN 依赖于一种新的、紧凑的电流源来为电容器充电,被称为 BTBT( band-to-band-tunneling current)

在 BTBT 中,量子隧穿电流以极低的电流使电容器充电,这意味着所需的能量更少。BTBT 方法还省去了用较大电容来存储大量的电流,为芯片上更小的电容铺平了道路,从而节省了空间。研究人员使用 45 纳米商用绝缘硅片晶体管技术对 BTBT 神经元方法进行测试,结果显示这种方法节省了大量的能源和空间。他们还宣布了 一种新的低功耗 AI 芯片,它可以实现所谓的脉冲神经网络

孟买理工学院研究者,包括 Maryam Shojaei Baghini(左一) 和 Udayan Ganguly(右一) 教授。

推荐: 超低功耗 AI 芯片:神经脉冲只需同类神经网络能量的 0.02%。

论文 7:Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning

  • 作者:Julien Perolat 等
  • 论文地址:https://arxiv.org/pdf/2206.15378.pdf

摘要: 近日,在 DeepMind 的一篇最新论文中,研究者提出了 DeepNash,它是一种无需人类演示、以无模型(model-free)方式学习 Stratego 自我博弈的智能体。DeepNask 击败了以往的 SOTA AI 智能体,并在该游戏最复杂的变体 Stratego Classic 中实现了专家级人类玩家的水平。

DeepNash 的核心是一种条理化、无模型的强化学习算法,研究者称为 Regularized Nash Dynamics(R-NaD)。DeepNash 将 R-NaD 与一个深度神经网络架构相结合,并收敛到纳什均衡,这意味着它学会了在激励竞争下比赛,并对试图利用它的竞争对手具有稳健性。

研究者表示,在学习算法中不部署任何搜索方法的情况下,AI 算法第一次能够在复杂棋盘游戏中达到人类专家水平,也是 AI 首次在 Stratego 游戏中实现人类专家水平。

DeepNash 方法的高级概览。

推荐: 对人胜率 84%,DeepMind AI 首次在西洋陆军棋中达到人类专家水平。

ArXiv Weekly Radiostation

机器之心联合由楚航、罗若天发起的ArXiv Weekly Radiostation,在 7 Papers 的基础上,精选本周更多重要论文,包括NLP、CV、ML领域各10篇精选,并提供音频形式的论文摘要简介,详情如下:


本周 10 篇 NLP 精选论文是:

1. Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset.  (from Christopher D. Manning, Dan Jurafsky)
2. Reinforcement Learning of Multi-Domain Dialog Policies Via Action Embeddings.  (from Bing Liu)
3. Zero-shot Cross-Linguistic Learning of Event Semantics.  (from Mark Steedman)
4. INSCIT: Information-Seeking Conversations with Mixed-Initiative Interactions.  (from Mari Ostendorf)
5. Scene-Aware Prompt for Multi-modal Dialogue Understanding and Generation.  (from Shutao Li)
6. Conditional Generation with a Question-Answering Blueprint.  (from Mirella Lapata)
7. Non-Linear Pairwise Language Mappings for Low-Resource Multilingual Acoustic Model Fusion.  (from Thomas Hain)
8. Investigating the Impact of Cross-lingual Acoustic-Phonetic Similarities on Multilingual Speech Recognition.  (from Thomas Hain)
9. A cross-corpus study on speech emotion recognition.  (from Thomas Hain)
10. An End-to-End Set Transformer for User-Level Classification of Depression and Gambling Disorder.  (from Paolo Rosso)


本周 10 篇 CV 精选论文是:

1. Segmenting Moving Objects via an Object-Centric Layered Representation.  (from Andrew Zisserman)
2. Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection.  (from Jian Sun)
3. Disentangled Action Recognition with Knowledge Bases.  (from Trevor Darrell)
4. GaitForeMer: Self-Supervised Pre-Training of Transformers via Human Motion Forecasting for Few-Shot Gait Impairment Severity Estimation.  (from Li Fei-Fei)
5. Finding Fallen Objects Via Asynchronous Audio-Visual Integration.  (from Joshua B. Tenenbaum, Antonio Torralba)
6. Local Relighting of Real Scenes.  (from Antonio Torralba)
7. Robust Watermarking for Video Forgery Detection with Improved Imperceptibility and Robustness.  (from Xiangyu Zhang)
8. ViRel: Unsupervised Visual Relations Discovery with Graph-level Analogy.  (from Jure Leskovec)
9. GAMa: Cross-view Video Geo-localization.  (from Mubarak Shah)
10. Towards Realistic Semi-Supervised Learning.  (from Mubarak Shah)


本周 10 篇 ML 精选论文是:

1. Back to the Source: Diffusion-Driven Test-Time Adaptation.  (from Trevor Darrell, Evan Shelhamer)
2. Deep Learning and Symbolic Regression for Discovering Parametric Equations.  (from Marin Soljačić)
3. MultiViz: An Analysis Benchmark for Visualizing and Understanding Multimodal Models.  (from Louis-Philippe Morency, Ruslan Salakhutdinov)
4. Pre-training helps Bayesian optimization too.  (from Zoubin Ghahramani)
5. Asynchronous Distributed Bayesian Optimization at HPC Scale.  (from Isabelle Guyon)
6. Approximating Discontinuous Nash Equilibrial Values of Two-Player General-Sum Differential Games.  (from Lei Zhang)
7. Adapting to Online Label Shift with Provable Guarantees.  (from Masashi Sugiyama, Zhi-Hua Zhou)
8. Not All Models Are Equal: Predicting Model Transferability in a Self-challenging Fisher Space.  (from Xiaogang Wang)
9. Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation.  (from Thomas L. Griffiths, Sergey Levine)
10. Predicting Out-of-Domain Generalization with Local Manifold Smoothness.  (from Kyunghyun Cho)

© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

登录查看更多
3

相关内容

【CMU博士论文】通过记忆的元强化学习,118页pdf
专知会员服务
46+阅读 · 2022年6月23日
斯坦福大学最新【强化学习】2022课程,含ppt
专知会员服务
124+阅读 · 2022年2月27日
【CMU博士论文】通过记忆的元强化学习
专知会员服务
53+阅读 · 2021年10月16日
专知会员服务
25+阅读 · 2021年4月2日
【CMU博士论文】机器人深度强化学习,128页pdf
专知会员服务
128+阅读 · 2020年8月27日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月5日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员