Geometry-aware modules are widely applied in recent deep learning architectures for scene representation and rendering. However, these modules require intrinsic camera information that might not be obtained accurately. In this paper, we propose a Spatial Transformation Routing (STR) mechanism to model the spatial properties without applying any geometric prior. The STR mechanism treats the spatial transformation as the message passing process, and the relation between the view poses and the routing weights is modeled by an end-to-end trainable neural network. Besides, an Occupancy Concept Mapping (OCM) framework is proposed to provide explainable rationals for scene-fusion processes. We conducted experiments on several datasets and show that the proposed STR mechanism improves the performance of the Generative Query Network (GQN). The visualization results reveal that the routing process can pass the observed information from one location of some view to the associated location in the other view, which demonstrates the advantage of the proposed model in terms of spatial cognition.


翻译:在最近的深层学习结构中广泛应用了几何测量模型模块,用于现场展示和制作。然而,这些模块需要无法准确获得的内在相机信息。在本文中,我们提议建立一个空间转换路由机制,用以建模空间属性,而不必事先应用任何几何方法。STR机制将空间转换作为电文传递过程对待,且视景构成与路由可编程神经网络建模。此外,还提议了一个“占用概念绘图”框架,以便为现场融合过程提供可解释的合理性。我们在若干数据集上进行了实验,并表明拟议的斯特克机制改善了Geneuration Query网络(GQN)的性能。可视化结果显示,路由过程可以将观测到的信息从某些视图的一个地点传送到另一个视图中的相关地点,从而展示了拟议模型在空间认知方面的优势。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【图与几何深度学习】Graph and geometric deep learning,49页ppt
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
谷歌足球游戏环境使用介绍
CreateAMind
32+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
4+阅读 · 2019年8月7日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
32+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员