In this paper, we address the issue of face hallucination. Most current face hallucination methods rely on two-dimensional facial priors to generate high resolution face images from low resolution face images. These methods are only capable of assimilating global information into the generated image. Still there exist some inherent problems in these methods; such as, local features, subtle structural details and missing depth information in final output image. Present work proposes a Generative Adversarial Network (GAN) based novel progressive Face Hallucination (FH) network to address these issues present among current methods. The generator of the proposed model comprises of FH network and two sub-networks, assisting FH network to generate high resolution images. The first sub-network leverages on explicitly adding high frequency components into the model. To explicitly encode the high frequency components, an auto encoder is proposed to generate high resolution coefficients of Discrete Cosine Transform (DCT). To add three dimensional parametric information into the network, second sub-network is proposed. This network uses a shape model of 3D Morphable Models (3DMM) to add structural constraint to the FH network. Extensive experimentation results in the paper shows that the proposed model outperforms the state-of-the-art methods.


翻译:在本文中, 我们处理面部幻觉问题。 大部分当前面部幻觉方法依靠二维面部前端方法从低分辨率面部图像生成高分辨率面部图像。 这些方法只能将全球信息同化到生成图像中。 在这些方法中还存在一些固有的问题; 例如本地特征、 微妙的结构细节和最后输出图像中缺失的深度信息。 当前的作品建议基于基因反影网络( GAN) 的新颖进步面部幻觉( FH) 网络, 以解决当前方法中存在的这些问题。 拟议模型的生成者包括FH 网络和两个子网络, 帮助 FH 网络生成高分辨率图像。 第一次将高频组件明确添加到模型中的子网络杠杆。 为明确编码高频组件, 提议了一个自动编码器, 以生成discrete Cosine 变换( DCT) 的高分辨率系数。 为了在网络中添加三个维维参数信息, 提议了第二个子网络。 这个网络使用3D Mordable 模型的形状模型模型, 协助 FH 网络生成高分辨率图像模型。 显示FH 网络的模型的模型的模型。 外观 演示图示 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
已删除
将门创投
3+阅读 · 2019年5月6日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关VIP内容
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
相关资讯
已删除
将门创投
3+阅读 · 2019年5月6日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员