Tangent and normal cones play an important role in constrained optimization to describe admissible search directions and, in particular, to formulate optimality conditions. They notably appear in various recent algorithms for both smooth and nonsmooth low-rank optimization where the feasible set is the set $\mathbb{R}_{\leq r}^{m \times n}$ of all $m \times n$ real matrices of rank at most $r$. In this paper, motivated by the convergence analysis of such algorithms, we study, by computing inner and outer limits, the continuity of the correspondence that maps each $X \in \mathbb{R}_{\leq r}^{m \times n}$ to the tangent cone to $\mathbb{R}_{\leq r}^{m \times n}$ at $X$. We also deduce results about the continuity of the corresponding normal cone correspondence. Finally, we show that our results include as a particular case the $a$-regularity of the Whitney stratification of $\mathbb{R}_{\leq r}^{m \times n}$ following from the fact that this set is a real algebraic variety, called the real determinantal variety.
翻译:恒星和普通锥体在限制优化以描述可受理的搜索方向,特别是制定最佳条件方面发挥着重要作用。它们明显出现在最近各种光滑和非湿滑低端优化的算法中,其中可行的一套方法是将每张X$-in\mathbb{R ⁇ leq r ⁇ m\ times n}设定为每张$\time n$m 美元(美元) 实际排名,最高为$美元。在本文中,由于对这种算法的趋同分析,我们通过计算内外部界限,研究每张X$-in\mathbb{R ⁇ leq r ⁇ m\ times n}的通信的连续性,而每张X$-mathb{R ⁇ leq r ⁇ m\ times n}的通信的连续性,而每张正正值的正值为$\\\mathb{R ⁇ r ⁇ r ⁇ m\ timems n}设定为美元。我们还推算出相应的正正态通信的连续性结果。最后,我们显示,我们的结果特别包括,在特定情况下, Whitney rimealbb{R ⁇ =r ⁇ =r{r\\c=reme nr}