We consider the problem of jointly modeling and clustering populations of tensors by introducing a high-dimensional tensor mixture model with heterogeneous covariances. To effectively tackle the high dimensionality of tensor objects, we employ plausible dimension reduction assumptions that exploit the intrinsic structures of tensors such as low-rankness in the mean and separability in the covariance. In estimation, we develop an efficient high-dimensional expectation-conditional-maximization (HECM) algorithm that breaks the intractable optimization in the M-step into a sequence of much simpler conditional optimization problems, each of which is convex, admits regularization and has closed-form updating formulas. Our theoretical analysis is challenged by both the non-convexity in the EM-type estimation and having access to only the solutions of conditional maximizations in the M-step, leading to the notion of dual non-convexity. We demonstrate that the proposed HECM algorithm, with an appropriate initialization, converges geometrically to a neighborhood that is within statistical precision of the true parameter. The efficacy of our proposed method is demonstrated through comparative numerical experiments and an application to a medical study, where our proposal achieves an improved clustering accuracy over existing benchmarking methods.


翻译:我们考虑采用高维多元混合模型,采用多种共差的高维多元混合模型,共同建模和组组群变色体群的问题。为了有效处理高维度的强度物体,我们采用合理维度的减少假设,利用高温体的内在结构,如中位低和共差分等;估计,我们开发了高效的高维预期-条件最大化算法,将M级的棘手优化打破为一系列简单得多的有条件优化问题,其中每个问题都是 convex,接受正规化,并有封闭式更新公式。我们的理论分析受到EM型估算中非兼容性的挑战,而且只能获得M级中有条件最大化的解决办法,从而导致双重非共振度概念。我们证明,拟议的HEMM算法经过适当初始化后,从几何角度将真正参数在统计精确度范围内的邻里相融合。我们拟议方法的功效是通过比较数字实验和对医学基准研究的应用来显示的,从而实现现有改进后的基准方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
159+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员