Warning: This paper contains a mistake, rendering the proof of the main theorem invalid. The logic of Bunched Implications (BI) combines both additive and multiplicative connectives, which include two primitive intuitionistic implications. As a consequence, contexts in the sequent presentation are not lists, nor multisets, but rather tree-like structures called bunches. This additional complexity notwithstanding, the logic has a well-behaved metatheory admitting all the familiar forms of semantics and proof systems. However, the presentation of an effective proof-search procedure has been elusive since the logic's debut. We show that one can reduce the proof-search space for any given sequent to a primitive recursive set, the argument generalizing Gentzen's decidability argument for classical propositional logic and combining key features of Dyckhoff's contraction-elimination argument for intuitionistic logic. An effective proof-search procedure, and hence decidability of provability, follows as a corollary.
翻译:警告: 本文包含一个错误, 使主要理论证明无效 。 集成影响( BI) 的逻辑结合了添加和多复制的连接, 包括两种原始的直觉影响。 因此, 序列演示中的背景不是列表, 也不是多套, 而是树形结构。 尽管如此复杂, 逻辑有一个良好的虚构的元理论, 承认所有熟悉的语义和验证系统的形式。 但是, 自逻辑开始以来, 有效的取证程序就一直难以呈现出来。 我们表明, 一个人可以减少任何给定的原始递归集序列的校对空间, 将Gentzen的陈列为古典理论逻辑的陈词以及将Dyckhoff的收缩- 消除逻辑的关键特征结合起来。 一个有效的取证研究程序, 以及由此推论的可变性, 接着是推论。