We propose a novel method, termed SuMo-net, that uses partially monotonic neural networks to learn a time-to-event distribution from a sample of covariates and right-censored times. SuMo-net models the survival function and the density jointly, and optimizes the likelihood for right-censored data instead of the often used partial likelihood. The method does not make assumptions about the true survival distribution and avoids computationally expensive integration of the hazard function. We evaluate the performance of the method on a range of datasets and find competitive performance across different metrics and improved computational time of making new predictions.
翻译:我们提议了一个叫Sumo-net的新颖方法,它使用部分单声神经网络,从共变和右检时间样本中学习时间对活动的分布。 Sumo-net 将生存功能和密度共同模型,并优化右检数据的可能性,而不是经常使用的部分可能性。该方法并不对真实生存分布进行假设,而是避免将危险功能计算为昂贵的整合。我们评估了该方法在一系列数据集上的性能,发现在不同尺度上具有竞争力的性能,并改进了进行新预测的计算时间。