3D human pose estimation is a difficult task, due to challenges such as occluded body parts and ambiguous poses. Graph convolutional networks encode the structural information of the human skeleton in the form of an adjacency matrix, which is beneficial for better pose prediction. We propose one such graph convolutional network named PoseGraphNet for 3D human pose regression from 2D poses. Our network uses an adaptive adjacency matrix and kernels specific to neighbor groups. We evaluate our model on the Human3.6M dataset which is a standard dataset for 3D pose estimation. Our model's performance is close to the state-of-the-art, but with much fewer parameters. The model learns interesting adjacency relations between joints that have no physical connections, but are behaviorally similar.


翻译:3D 人体构成估计是一项艰巨的任务, 原因是存在诸如隐蔽身体部位和模棱两可的外形等挑战。 图表演变网络以相邻矩阵的形式将人体骨骼的结构信息编码成一个有助于更好地作出预测的相邻矩阵。 我们提议了一个名为 PoseGraphNet 的3D 人体构成回归的图形演变网络。 我们的网络使用一个适应性强的相邻矩阵和相邻群体特有的内核。 我们评估了我们的人体3. 6M 数据集模型,这是用于3D 构成估计的标准数据集。 我们的模型的性能接近于最新状态,但参数要少得多。 模型了解了没有物理联系但行为相似的连接点之间的有趣的相邻关系。

0
下载
关闭预览

相关内容

【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
Facebook实时人体姿态估计:Dense Pose及其应用展望
机器之心
9+阅读 · 2019年2月10日
SkeletonNet:完整的人体三维位姿重建方法
计算机视觉life
21+阅读 · 2019年1月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
12+阅读 · 2019年1月24日
Using Scene Graph Context to Improve Image Generation
VIP会员
相关VIP内容
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
Facebook实时人体姿态估计:Dense Pose及其应用展望
机器之心
9+阅读 · 2019年2月10日
SkeletonNet:完整的人体三维位姿重建方法
计算机视觉life
21+阅读 · 2019年1月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Top
微信扫码咨询专知VIP会员