3D human pose estimation is a difficult task, due to challenges such as occluded body parts and ambiguous poses. Graph convolutional networks encode the structural information of the human skeleton in the form of an adjacency matrix, which is beneficial for better pose prediction. We propose one such graph convolutional network named PoseGraphNet for 3D human pose regression from 2D poses. Our network uses an adaptive adjacency matrix and kernels specific to neighbor groups. We evaluate our model on the Human3.6M dataset which is a standard dataset for 3D pose estimation. Our model's performance is close to the state-of-the-art, but with much fewer parameters. The model learns interesting adjacency relations between joints that have no physical connections, but are behaviorally similar.
翻译:3D 人体构成估计是一项艰巨的任务, 原因是存在诸如隐蔽身体部位和模棱两可的外形等挑战。 图表演变网络以相邻矩阵的形式将人体骨骼的结构信息编码成一个有助于更好地作出预测的相邻矩阵。 我们提议了一个名为 PoseGraphNet 的3D 人体构成回归的图形演变网络。 我们的网络使用一个适应性强的相邻矩阵和相邻群体特有的内核。 我们评估了我们的人体3. 6M 数据集模型,这是用于3D 构成估计的标准数据集。 我们的模型的性能接近于最新状态,但参数要少得多。 模型了解了没有物理联系但行为相似的连接点之间的有趣的相邻关系。