The paper develops a robust estimation method that makes the dynamic mode decomposition method resistant to outliers while being fast to compute and statistically efficient (i.e. accurate) at the Gaussian and non-Gaussian thick tailed distributions. The proposed robust dynamic mode decomposition (RDMD) is anchored on the theory of robust statistics. Specifically, it relies on the Schweppe-type Huber generalized maximum-likelihood estimator that minimizes a convex weighted Huber loss function, where the weights are calculated via projection statistics, thereby making the proposed RDMD robust to outliers, whether vertical outliers or bad leverage points. The performance of the proposed RDMD is demonstrated numerically using canonical models of dynamical systems. Simulation results reveal that it outperforms several other methods proposed in the literature, including the one based on the least trimmed squares estimator.


翻译:本文开发了一种稳健的估计方法,使高山和非高山厚尾部分布的动态模式分解方法在快速计算和统计上有效(即准确)的同时,在高山和非高山厚尾部分布中不易产生对异常点具有抗力的动态模式分解方法。 拟议的强势动态模式分解(RDMD)以稳健统计理论为基础。 具体地说,它依靠Schweppe类Huber通用的最大相似度测算器,该测算器最大限度地减少对等式加权赫伯损失功能,其中加权通过预测统计计算,从而使拟议的RDMD对异常点(无论是垂直的外端还是坏的杠杆点)具有强力。 拟议的RDMD的性能在数字上以动态系统的罐体模型为证明。 模拟结果显示它优于文献中提议的几种其他方法,包括以最小三角方位数的测算器为基础的方法。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
已删除
将门创投
3+阅读 · 2019年11月25日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年7月10日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员