Fault localization is challenging in an online service system due to its monitoring data's large volume and variety and complex dependencies across or within its components (e.g., services or databases). Furthermore, engineers require fault localization solutions to be actionable and interpretable, which existing research approaches cannot satisfy. Therefore, the common industry practice is that, for a specific online service system, its experienced engineers focus on localization for recurring failures based on the knowledge accumulated about the system and historical failures. Although the above common practice is actionable and interpretable, it is largely manual, thus slow and sometimes inaccurate. In this paper, we aim to automate this practice through machine learning. That is, we propose an actionable and interpretable fault localization approach, DejaVu, for recurring failures in online service systems. For a specific online service system, DejaVu takes historical failures and dependencies in the system as input and trains a localization model offline; for an incoming failure, the trained model online recommends where the failure occurs (i.e., the faulty components) and which kind of failure occurs (i.e., the indicative group of metrics) (thus actionable), which are further interpreted by both global and local interpretation methods (thus interpretable). Based on the evaluation on 601 failures from three production systems and one open-source benchmark, in less than one second, DejaVu can on average rank the ground truths at 1.66-th to 5.03-th among a long candidate list, outperforming baselines by at least 51.51%.


翻译:在一个在线服务系统中,由于数据在数量和种类上以及各组成部分(例如服务或数据库)之间或内部的复杂依赖性(例如,服务或数据库)上的监测数据量和多样性以及复杂的依赖性,错误的本地化是具有挑战性的。此外,工程师要求错误的本地化解决方案具有可操作性和可解释性,而现有的研究方法无法满足这一点。因此,通常的行业做法是,对于特定的在线服务系统,有经验的工程师根据所积累的系统知识和历史失败情况,侧重于系统反复故障的本地化。虽然上述常见做法是可操作和可解释的,但在很大程度上是手工的,因此是缓慢的,有时是不准确的。在本文件中,我们的目标是通过机器学习使这种做法自动化。也就是说,我们提出了一种可操作和可解释的本地化的本地化方法,即DejaVu,对于在线服务系统中反复出现的故障,DejaVu采用历史的故障和依赖性,作为输入和离线化模型;对于即将出现的故障,经过培训的在线模式建议最少是公开的(即错误的成分),因此,我们的目标是通过机器学习来自动地校外学习。 (i-ialalalal-lial lifal lifal lieval list) ladeal ladeal lade) laudation lacuide) lacuild lautes) 一种基于一种方法,从一种全球测算方法,从一种方法,可以解释一种基底方法,从一种方法,从一种基底,从一种方法,从一种基底,从一种基底,从一种基底基底基底基比一种方法,从一种基底基底,从一种方法。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
12+阅读 · 2021年8月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员