As neural networks become able to generate realistic artificial images, they have the potential to improve movies, music, video games and make the internet an even more creative and inspiring place. Yet, the latest technology potentially enables new digital ways to lie. In response, the need for a diverse and reliable method toolbox arises to identify artificial images and other content. Previous work primarily relies on pixel-space CNNs or the Fourier transform. To the best of our knowledge, synthesized fake image analysis and detection methods based on a multi-scale wavelet representation, localized in both space and frequency, have been absent thus far. The wavelet transform conserves spatial information to a degree, which allows us to present a new analysis. Comparing the wavelet coefficients of real and fake images allows interpretation. Significant differences are identified. Additionally, this paper proposes to learn a model for the detection of synthetic images based on the wavelet-packet representation of natural and GAN-generated images. Our lightweight forensic classifiers exhibit competitive or improved performance at comparatively small network sizes, as we demonstrate on the FFHQ, CelebA and LSUN source identification problems. Furthermore, we study the binary FaceForensics++ fake-detection problem.
翻译:随着神经网络能够产生现实的人工图像,它们有可能改进电影、音乐、视频游戏和使互联网成为更具创造性和启发性的地方。然而,最新技术有可能使新的数字方法能够产生新的谎言。作为回应,需要一种多样化和可靠的方法工具箱来识别人造图像和其他内容。以前的工作主要依靠像素空间CNN或Fourier变异。我们的知识最丰富的知识是,在空间和频率上都存在多种规模的波段代表制的合成假图像分析和检测方法,但迄今还没有这种分析方法。波盘将空间信息转换为某种程度,使我们能够提出新的分析。比较真实和假图像的波点系数,可以解释。还查明了重大差异。此外,本文提议学习一种模型,根据自然和GAN产生的图像的波盘组合来检测合成图像。我们的轻度法医分类仪在相对小的网络尺寸上展示了竞争性或改进性能,正如我们在FFHQ、CelebA和LSUN来源识别问题上展示的那样,我们研究了一个程度较小的网络尺寸。