We propose a constrained linear data-feature-mapping model as an interpretable mathematical model for image classification using a convolutional neural network (CNN). From this viewpoint, we establish detailed connections between the traditional iterative schemes for linear systems and the architectures of the basic blocks of ResNet- and MgNet-type models. Using these connections, we present some modified ResNet models that compared with the original models have fewer parameters and yet can produce more accurate results, thereby demonstrating the validity of this constrained learning data-feature-mapping assumption. Based on this assumption, we further propose a general data-feature iterative scheme to show the rationality of MgNet. We also provide a systematic numerical study on MgNet to show its success and advantages in image classification problems and demonstrate its advantages in comparison with established networks.
翻译:我们提出了一个有限的线性数据-地貌映射模型,作为利用进化神经网络进行图像分类的一种可解释的数学模型。我们从这个角度出发,在线性系统的传统迭代计划与ResNet-和MgNet型模型基本块的结构之间建立了详细的联系。我们利用这些连接,提出了一些与原始模型相比的经修订的ResNet模型,其参数较少,但能够产生更准确的结果,从而证明这一有限的学习数据-地貌映射假设的有效性。我们根据这一假设,进一步提议了一个一般的数据-地物迭代计划,以显示MgNet的合理性。我们还对MgNet进行了系统的数字研究,以展示其在图像分类问题上的成功和优势,并展示其与已建立的网络相比的优势。