Time series anomaly detection is a challenging problem due to the complex temporal dependencies and the limited label data. Although some algorithms including both traditional and deep models have been proposed, most of them mainly focus on time-domain modeling, and do not fully utilize the information in the frequency domain of the time series data. In this paper, we propose a Time-Frequency analysis based time series Anomaly Detection model, or TFAD for short, to exploit both time and frequency domains for performance improvement. Besides, we incorporate time series decomposition and data augmentation mechanisms in the designed time-frequency architecture to further boost the abilities of performance and interpretability. Empirical studies on widely used benchmark datasets show that our approach obtains state-of-the-art performance in univariate and multivariate time series anomaly detection tasks. Code is provided at https://github.com/DAMO-DI-ML/CIKM22-TFAD.
翻译:由于时间依赖性和标签数据有限,时间序列异常现象的探测是一个具有挑战性的问题,因为时间依赖性很复杂,而且标签数据有限。虽然提出了包括传统和深层模型在内的一些算法,但其中多数主要侧重于时间域建模,没有充分利用时间序列数据的频域信息。在本文中,我们提议采用基于时间-时间序列的实时探测模型,或短期TFAD,以利用时间和频域改进性能。此外,我们还将时间序列的分解和数据增强机制纳入设计的时间-频率结构,以进一步提高性能和可解释性的能力。关于广泛使用的基准数据集的经验研究表明,我们的方法在单体和多变时间序列异常探测任务中获得了最先进的性能。代码见https://github.com/DaMO-DI-MLML/CIKM22-TFAD。