This paper studies linear convergence of the subspace constrained mean shift (SCMS) algorithm, a well-known algorithm for identifying a density ridge defined by a kernel density estimator. By arguing that the SCMS algorithm is a special variant of a subspace constrained gradient ascent (SCGA) algorithm with an adaptive step size, we derive linear convergence of such SCGA algorithm. While the existing research focuses mainly on density ridges in the Euclidean space, we generalize density ridges and the SCMS algorithm to directional data. In particular, we establish the stability theorem of density ridges with directional data and prove the linear convergence of our proposed directional SCMS algorithm.
翻译:本文研究子空间受限中位移(SCMS)算法的线性趋同,这是一种为人熟知的用于确定内核密度估测器所定义的密度脊的算法。通过辩称SCMS算法是具有适应性步骤大小的子空间受限梯度爬升算法的特殊变体,我们得出了这种SCGA算法的线性趋同。虽然现有研究主要侧重于欧clidean空间的密度脊,但我们将密度脊和SCMS算法概括为方向数据。特别是,我们用方向数据确定了密度脊的稳定性定理,并证明了我们拟议的SCCMS算法的线性趋同。