We propose a robust calibration pipeline that optimises the selection of calibration samples for the estimation of calibration parameters that fit the entire scene. We minimise user error by automating the data selection process according to a metric, called Variability of Quality (VOQ) that gives a score to each calibration set of samples. We show that this VOQ score is correlated with the estimated calibration parameter's ability to generalise well to the entire scene, thereby overcoming the overfitting problems of existing calibration algorithms. Our approach has the benefits of simplifying the calibration process for practitioners of any calibration expertise level and providing an objective measure of the quality for our calibration pipeline's input and output data. We additionally use a novel method of assessing the accuracy of the calibration parameters. It involves computing reprojection errors for the entire scene to ensure that the parameters are well fitted to all features in the scene. Our proposed calibration pipeline takes 90s, and obtains an average reprojection error of 1-1.2cm, with standard deviation of 0.4-0.5cm over 46 poses evenly distributed in a scene. This process has been validated by experimentation on a high resolution, software definable lidar, Baraja Spectrum-Scan; and a low, fixed resolution lidar, Velodyne VLP-16. We have shown that despite the vast differences in lidar technologies, our proposed approach manages to estimate robust calibration parameters for both. Our code and data set used for this paper are made available as open-source.


翻译:我们建议一个强大的校准管道,选择适合整个场景的校准样本,以估计校准参数;我们建议选择适合整个场景的校准样本;我们通过按照一个测量标准,即质量的可变性(VOQ),将数据选择过程自动化,从而将用户错误降到最低;我们还使用一种新的方法评估校准参数的准确性,对每组校准样本进行评分;我们显示,VOQ评分与估计校准参数对整个场景进行全面普及的能力相关,从而克服现有校准算法的过大问题。我们的方法的好处是简化任何校准专门知识水平的执业者的校准过程,为校准管道输入和输出数据数据的质量提供一个客观的尺度;我们还使用了一种评估校准参数的新方法,对整个场景进行重新预测,以确保参数与现场的所有特征完全匹配。我们提议的校准管道需要90秒,并获得1至1.2厘米的平均测算错误。我们的标准偏差是4-0.5厘米,在46平整的场景中平均分布。我们使用的校准参数是用于高分辨率的SVDAR标准,这个软件已经通过高分辨率校准了。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
干货 | LIDAR、ToF相机、双目相机如何科学选择?
计算机视觉life
4+阅读 · 2019年1月23日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
7+阅读 · 2021年5月25日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
干货 | LIDAR、ToF相机、双目相机如何科学选择?
计算机视觉life
4+阅读 · 2019年1月23日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员