The computational study of equilibria involving constraints on players' strategies has been largely neglected. However, in real-world applications, players are usually subject to constraints ruling out the feasibility of some of their strategies, such as, e.g., safety requirements and budget caps. Computational studies on constrained versions of the Nash equilibrium have lead to some results under very stringent assumptions, while finding constrained versions of the correlated equilibrium (CE) is still unexplored. In this paper, we introduce and computationally characterize constrained Phi-equilibria -- a more general notion than constrained CEs -- in normal-form games. We show that computing such equilibria is in general computationally intractable, and also that the set of the equilibria may not be convex, providing a sharp divide with unconstrained CEs. Nevertheless, we provide a polynomial-time algorithm for computing a constrained (approximate) Phi-equilibrium maximizing a given linear function, when either the number of constraints or that of players' actions is fixed. Moreover, in the special case in which a player's constraints do not depend on other players' strategies, we show that an exact, function-maximizing equilibrium can be computed in polynomial time, while one (approximate) equilibrium can be found with an efficient decentralized no-regret learning algorithm.
翻译:对制约玩家战略的平衡的计算研究在很大程度上被忽略了。然而,在现实世界应用中,玩家通常会受到限制,无法理解其某些战略的可行性,例如安全要求和预算上限。对纳什均衡限制版本的计算研究在非常严格的假设下产生了一些结果,而发现相关平衡(CE)的限制性版本仍然没有得到探讨。在本文中,我们引入并计算了限制的平衡 -- -- 一个比受限制的CEs -- -- 在正常形式游戏中更为普遍的概念。我们表明,计算这种平衡通常在计算上难以做到,而且这种平衡的设置可能不是相互交织的,与未受限制的CEs形成鲜明的分歧。然而,我们提供了计算受限制(近似)Phi-平衡的多种时间算法,当制约的数量或玩家的行动已经固定时,我们引入并计算出某种有限的线性功能。此外,在这样一个特殊的例子中,一个玩家的平衡机制可能不会在一种稳定的排序中显示,一个角色的稳定性的稳定性,而一个角色的正轨的平衡则不能取决于其他玩家的学习策略。