Prediction of seizure before they occur is vital for bringing normalcy to the lives of patients. Researchers employed machine learning methods using hand-crafted features for seizure prediction. However, ML methods are too complicated to select the best ML model or best features. Deep Learning methods are beneficial in the sense of automatic feature extraction. One of the roadblocks for accurate seizure prediction is scarcity of epileptic seizure data. This paper addresses this problem by proposing a deep convolutional generative adversarial network to generate synthetic EEG samples. We use two methods to validate synthesized data namely, one-class SVM and a new proposal which we refer to as convolutional epileptic seizure predictor (CESP). Another objective of our study is to evaluate performance of well-known deep learning models (e.g., VGG16, VGG19, ResNet50, and Inceptionv3) by training models on augmented data using transfer learning with average time of 10 min between true prediction and seizure onset. Our results show that CESP model achieves sensitivity of 78.11% and 88.21%, and FPR of 0.27/h and 0.14/h for training on synthesized and testing on real Epilepsyecosystem and CHB-MIT datasets, respectively. Effective results of CESP trained on synthesized data shows that synthetic data acquired the correlation between features and labels very well. We also show that employment of idea of transfer learning and data augmentation in patient-specific manner provides highest accuracy with sensitivity of 90.03% and 0.03 FPR/h which was achieved using Inceptionv3, and that augmenting data with samples generated from DCGAN increased prediction results of our CESP model and Inceptionv3 by 4-5% as compared to state-of-the-art traditional augmentation techniques. Finally, we note that prediction results of CESP achieved by using augmented data are better than chance level for both datasets.


翻译:在患者生活正常化之前对缉获进行预测对于使患者的生活恢复正常至关重要。 研究人员使用机械学习方法, 使用手工艺特性进行抓获预测。 但是, ML方法过于复杂, 无法选择最佳 ML 模型或最佳特征。 深学习方法有利于自动提取特征。 准确抓获预测的一个障碍是缺乏癫痫性缉获数据。 本文通过提出一个深度革命基因对抗网络来解决这一问题, 以生成合成 EEEEG 样本。 我们使用两种方法来验证综合数据, 即1级SVM 和一个新的建议, 我们称其为快速癫痫性最高抓取预测( CESP ) 。 我们研究的另一个目标是评估众所周知的深度学习模型( 例如, VGG16, VGG19, ResNet50和 Invitionvv3 ) 的绩效。 通过培训模型, 使用传输平均10分钟的传输学习时间, 生成真实的 EEEEESP 模型的敏感性达到78.11%和88. 21%, 以及使用0.17/ B和0.14的FPR, 用于对已培训的G.

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员